题目分析:

题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{(-1)^{|s|-1}*E(min(s))}$。

那么设计期望DP,令$f[i][j][k]$表示前i个球,可选的区间为j个,球的个数是奇数还是偶数。然后就是要写一个高精度,不一定要真的写,可以yy出一种简便方法。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; int n; long long f[maxn][maxn*maxn][]; int C(int now){return (now+)*now/;} struct nb{
long long zs;
long long xs[];
}ans; void cunt(long long alpha,long long beta){
ans.zs += alpha/beta;alpha %= beta;
for(int i=;i<=;i++){
alpha*=;
ans.xs[i] += alpha/beta; alpha%=beta;
}
} void work(){
f[][][] = ;
for(int i=;i<=n;i++){
for(int j=;j<=C(i);j++){
for(int k=i-;k>=;k--){
if(C(i-k-) > j) break;
f[i][j][] += f[k][j-C(i-k-)][];
f[i][j][] += f[k][j-C(i-k-)][];
}
}
}
for(int i=;i<=;i++) ans.xs[i] = ;
ans.zs = ;
for(int i=;i<=n;i++){
for(int j=;j<C(i);j++){
cunt(C(n)*(f[i][j][]-f[i][j][]),(C(n)-j-C(n-i)));
}
}
/*double exm = 5.123456789;
printf("%.0lf\n",exm);
printf("%.1lf\n",exm);
printf("%.2lf\n",exm);
printf("%.3lf\n",exm);
printf("%.4lf\n",exm);
printf("%.5lf\n",exm);
printf("%.6lf\n",exm);
printf("%.7lf\n",exm);
printf("%.8lf\n",exm);
exit(0);*/
for(int i=;i>=;i--){
if(i == && ans.xs[]>=)ans.xs[i]++;
long long p = ans.xs[i]/;
ans.xs[i] -= p*; if(ans.xs[i] < ) p--,ans.xs[i]+=;
ans.xs[i-] += p;
}
ans.zs += ans.xs[];
printf("%lld.",ans.zs);
for(int i=;i<=;i++) printf("%lld",ans.xs[i]);
printf("\n");
} int main(){
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(f,,sizeof(f));
work();
}
return ;
}

HDU4624 Endless Spin 【最大最小反演】【期望DP】的更多相关文章

  1. HDU4624 Endless Spin 和 HAOI2015 按位或

    Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围 ...

  2. HDU4624 Endless Spin(概率&&dp)

    2013年多校的题目,那个时候不太懂怎么做,最近重新拾起来,看了一下出题人当初的解题报告,再结合一下各种情况的理解,终于知道整个大致的做法,这里具体写一下做法. 题意:给你一段长度为[1..n]的白色 ...

  3. 题解 hdu4624 Endless Spin

    题目链接 题目大意: 有长度为\(n\)的区间,每次随机选择一段(左右端点都是整数)染黑,问期望多少次全部染黑. \(n\leq 50\) 设\(n\)个随机变量\(t_1,...,t_n\).\(t ...

  4. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  5. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  6. 【NOIP2016】Day1 T3 换教室(期望DP)

    题目背景 NOIP2016 提高组 Day1 T3 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n 节课程安排在 n 个时间段上. ...

  7. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  8. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  9. 洛谷P1850 换教室 [noip2016] 期望dp

    正解:期望dp 解题报告: 哇我发现我期望这块真的布星,可能在刷了点儿NOIp之后会去搞一波期望dp的题...感觉连基础都没有打扎实?基础概念都布星! 好那先把这题理顺了嗷qwq 首先我们看到期望就会 ...

随机推荐

  1. mariadb(第一章)

      数据库介绍 1.什么是数据库? 简单的说,数据库就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织,存储的,我们可以通过数据库提供的多种方法来 ...

  2. H5 video标签的属性

    35-video标签 video标签的属性 src: 用于告诉video标签需要播放的视频地址 autoplay: 用于告诉video标签是否需要自动播放视频 controls: 用于告诉video标 ...

  3. A. Chess Placing

    链接 [https://codeforces.com/contest/985/problem/A] 题意 给你一个偶数n,输入n/2个数,代表棋子的位置,有一个1*n的棋盘是黑白相间的 问你使得所有棋 ...

  4. TCP粘包问题解析与解决

    一.粘包分析 作者本人在写一个FTP项目时,在文件的上传下载模块遇到了粘包问题.在网上找了一些解决办法,感觉对我情况都不好用,因此自己想了个比较好的解决办法,提供参考 1.1 粘包现象 在客户端与服务 ...

  5. semantic-ui 标题

    在semantic-ui中定义了5中标题样式,注意HTML中有h1-h6,而semantic-ui中只有h1-h5. 不过需要注意的是,semantic-ui的标题仍旧使用h1-h5来表示,但是在cl ...

  6. C99标准的柔性数组 (Flexible Array)

    [什么是柔性数组(Fliexible Array)] 柔性数组在C99中的定义是: 6.7.2.1 Structure and union specifiers As a special case, ...

  7. Laravel 获取 Route Parameters (路由参数) 的 5 种方法

      Laravel 获取路由参数的方式有很多,并且有个小坑,汇总如下.   假设我们设置了一个路由参数:   现在我们访问 http://test.dev/1/2   在 TestController ...

  8. [转帖]HTTP 头部解释

    HTTP 头部解释 https://www.cnblogs.com/poissonnotes/p/4844014.html 之前看的太粗了 同事闻起来 referer 才知道自己所知甚少.. ==== ...

  9. javaScript中闭包的工作原理

    一.什么是闭包? 官方”的解释是:闭包是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分.相信很少有人能直接看懂这句话,因为他描述的太学术.其实这句话 ...

  10. 剑指offer(20)二叉搜索树与双向表

    题目: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 思路一:递归法 1.将左子树构造成双链表,并返回链表头节点. 2.定位至左子 ...