【BZOJ4008】[HNOI2015]亚瑟王(动态规划)
【BZOJ4008】[HNOI2015]亚瑟王(动态规划)
题面
题解
设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率。
分两种情况转移,即当前这张是否被触发。
不被触发的概率是\(\displaystyle (1-p[i])^{r-j}\),即一共会考虑\(r-j\)次,每次都不被触发。
被触发的概率呢?拿不被触发的概率减一下就好了也就是\(1-(1-p[i])^{r-j+1}\)。
所以得到转移:\(\displaystyle f[i][j]=f[i-1][j]*(1-p[i])^{r-j}+f[i-1][j-1]*(1-(1-p[i])^{r-j+1})\)。
这样是概率,考虑怎么算期望,显然期望当且仅当一张卡被选择到的时候才会计算,那么额外开一个数组\(g[i][j]\),含义同\(f\),改概率为期望,转移的时候额外考虑一下期望的转移就好了。
#include<iostream>
#include<cstdio>
using namespace std;
double f[222][135],g[222][135],p[222],pw[222][135];
int n,r,d[222];
int main()
{
int T;scanf("%d",&T);f[0][0]=1;
while(T--)
{
scanf("%d%d",&n,&r);
for(int i=1;i<=n;++i)scanf("%lf%d",&p[i],&d[i]);
for(int i=1;i<=n;++i)pw[i][0]=1,f[i][0]=g[i][0]=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=r;++j)
f[i][j]=g[i][j]=0,pw[i][j]=pw[i][j-1]*(1-p[i]);
for(int i=1;i<=n;++i)
for(int j=0;j<=r&&j<=i;++j)
{
f[i][j]+=f[i-1][j]*pw[i][r-j],g[i][j]+=g[i-1][j]*pw[i][r-j];
if(j)f[i][j]+=f[i-1][j-1]*(1-pw[i][r-j+1]),g[i][j]+=(g[i-1][j-1]+d[i]*f[i-1][j-1])*(1-pw[i][r-j+1]);
}
double ans=0;for(int i=0;i<=r;++i)ans+=g[n][i];
printf("%.10lf\n",ans);
}
return 0;
}
【BZOJ4008】[HNOI2015]亚瑟王(动态规划)的更多相关文章
- 概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- BZOJ4008 [HNOI2015]亚瑟王 【概率dp】
题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...
- bzoj4008: [HNOI2015]亚瑟王【期望dp】
一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...
- BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...
- bzoj4008: [HNOI2015]亚瑟王 dp
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...
- 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)
传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...
- 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王
题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...
随机推荐
- iOS 传感器集锦
https://www.jianshu.com/p/5fc26af852b6 传感器集锦:指纹识别.运动传感器.加速计.环境光感.距离传感器.磁力计.陀螺仪 效果预览.gif 一.指纹识别 应用: ...
- Python之切片操作
1.列表list中使用 1.range()生成器 就是list取值的一种方式. 生成器range(),用于写列表的范围,如果只写一个数,就表示从0开始,到写入的值-1: l=list(range(10 ...
- Python中Celery 的基本用法以及Django 结合 Celery 的使用和实时监控进程
celery是什么 1 celery是一个简单,灵活且可靠的,处理大量消息的分布式系统 2 专注于实时处理的异步任务队列 3 同时也支持任务调度 执行流程 Celery 基本使用 tasks.py i ...
- PHP 高并发秒杀解决方案
本文提供 PHP 高并发秒杀解决方案(附加三个案例说明(普通流程,使用文件锁,使用redis消息队列)) 1:(正常流程,不做任何高并发处理),代码如下: <?php $_mysqli = ne ...
- C#复习笔记(4)--C#3:革新写代码的方式(Lambda表达式和表达式树)
Lambda表达式和表达式树 先放一张委托转换的进化图 看一看到lambda简化了委托的使用. lambda可以隐式的转换成委托或者表达式树.转换成委托的话如下面的代码: Func<string ...
- [转帖]整理:Windows系统下的奇技淫巧大汇总
整理:Windows系统下的奇技淫巧大汇总 https://blog.csdn.net/bat67/article/details/76381357 Win+home Crtl+home 还有 Win ...
- VSC软件快捷键
Shift + Alt + F 格式化 Ctrl+Shift+P, F1显示命令面板 Ctrl+P快速打开,进入File… Ctrl + Shift + N新窗口/实例 Ctrl + Shift + ...
- 剑指offer(7)
今天的几道题目都是关于斐波那契数列的. 题目1: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 传统的方法采用递归函数,这种 ...
- SpringBoot 标签之启动
在SpringBoot中入口我们使用: package com.sankuai.qcs.regulation.traffic; import org.springframework.boot.Spri ...
- 在IWMS中的分页效果
第一步,你需要在后台修改你所要显示的新闻数目: 第二步,你需要把这段代码加到你需要分页的列表里边 代码: <%=config.TopAd%><asp:Literal id=" ...