MT【293】拐点处切线
(2018浙江高考压轴题)
已知函数$f(x)=\sqrt{x}-\ln x.$
(2)若$a\le 3-4\ln 2,$证明:对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一的公共点.
分析:等价于$k=\dfrac{\sqrt{x}-\ln x-a}{x}$有唯一解.记$g(x)=\dfrac{\sqrt{x}-\ln x-a}{x}$,则$g^{'}(x)=\dfrac{\ln x-\dfrac{\sqrt{x}}{2}-1+a}{x^2}$,
记$h(x)=\ln x-\frac{\sqrt{x}}{2}-1+a$,则$h^{'}(x)=\dfrac{4-\sqrt{x}}{4x}$,故$h(x)$在$(0,16)$单调递减$(16,+\infty)$单调递增.
所以$h(x)_{max}=h(16)=\ln(16)-3+a\le0$,所以$g^{'}(x)<0$,即$g(x)$单调递减.又$\lim\limits_{x\rightarrow0}(\dfrac{\sqrt{x}-\ln x-a}{x})= +\infty,\lim\limits_{x\rightarrow+\infty}(\dfrac{\sqrt{x}-\ln x-a}{x})=0$,故$k>0$时$y=k$与$g(x)=\dfrac{\sqrt{x}-\ln x-a}{x}$有且只有一个交点.
注:这里$a\le 3-4\ln 2$的条件可以考虑$f(x)=\sqrt{x}-\ln x.$的二阶导数的拐点$f^{''}(x)=-\dfrac{1}{4}x^{\frac{3}{2}}+x^{-2}=0$得拐点为$x=16$,求拐点处的切线方程:$y=\dfrac{1}{16}x+3-4\ln2$.
考虑$f(x)$的图像,当$a\le3-4\ln2$时,对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一的公共点.
练习:若对任意$a>0$,函数$f(x)=x^3+ax^2+bx+1$在开区间$(-\infty,0)$内有且仅有一个零点,则实数$b$的取值范围_____
提示:只需考虑$y=ax+b$与$y=-x^2-\dfrac{1}{x}$图像交点,考虑拐点处切线方程:$y=3x+3$分析$y=-x^2-\dfrac{1}{x}$图像,易得$b\le3$
注:无非就是$b\ge3$或者$b\le3$,从图像中看若$b\ge3$,可以取$b$足够大,显然当$a>0$时可以有两个交点,故只有一个交点时$b\le3$
MT【293】拐点处切线的更多相关文章
- MT【25】切线不等式原理及例题
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.
- NOI前的考试日志
4.14 网络流专项测试 先看T1,不会,看T2,仙人掌???wtf??弃疗.看T3,貌似最可做了,然后开始刚,刚了30min无果,打了50分暴力,然后接着去看T1,把序列差分了一下,推了会式子,发现 ...
- OpenGL光照计算中法线矩阵原理及推到过程
问题起源 在计算漫反射关照时,需要用到法线,通过法线和光线的点乘值,计算漫反射的产生的光线强度,所以需要从顶点着色器中将法线数据传递到片源着色器中,但是片源着色器中的顶点坐标是经过了模型矩阵变化过的世 ...
- 机器学习实战4:Adaboost提升:病马实例+非均衡分类问题
Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机:机器学习面试中也会经常提问到Adaboost的一些原理:另外本文还介绍了一下非平衡分类问题的解决方案,这个问题在面试 ...
- HTML5 十大新特性(四)——Canvas绘图
H5引入了canvas标签,默认是一个300*150的inline-block.canvas的宽高只能用它自身的width和height属性来指定,而不能使用css样式中的width.height. ...
- 单向和双向tvs管
tvs管器件按极性可分为单极性和双极性两种,即单向tvs管和双向tvs管. 单向tvs管保护器件仅能对正脉冲或者负脉冲进行防护,而双向tvs管保护器件一端接要保护的线路,一端接地,无论来自反向还 ...
- 如何利用百度地图JSAPI画带箭头的线?
百度地图JSAPI提供两种绘制多折线的方式,一种是已知多折线经纬度坐标串通过AddOverlay接口进行添加:另一种是通过在地图上鼠标单击进行绘制(鼠标绘制工具条库).目前这两种方式只能绘制多折线,并 ...
- 1038: [ZJOI2008]瞭望塔
半平面交. 半平面指的就是一条直线的左面(也不知道对不对) 半平面交就是指很多半平面的公共部分. 这道题的解一定在各条直线的半平面交中. 而且瞭望塔只可能在各个点或者半平面交折线的拐点处. 求出半平面 ...
- UVA_303_Pipe_(计算几何基础)
描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=5&page ...
随机推荐
- OSS网页上传和断点续传(终结篇)
有了之前OSS网页上传和断点续传(OSS配置篇)和(STSToken篇),其万事俱备只欠东风啦,此终结篇即将展示OSS上传文件及断点续传的无限魅力... 网络卡顿.延迟能续传吗?能! 关了浏览器,还能 ...
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- Java.lang.OutOfMemoryError:Metaspace
Understand the OutOfMemoryError Exceptionhttps://docs.oracle.com/javase/8/docs/technotes/guides/trou ...
- 配置router列表
import Vue from "vue"; import VueRouter from 'vue-router'; import Star from '../components ...
- C#设计模式之1:策略模式
首先需要说明的是该系列的所有内容都是基于headfirst设计模式来描述的.因为我之前也看过不少关于设计模式的书,还是发现这本最好,因为这本书里面给出的例子是最贴切实际的.不说了,开始这个系列吧! 策 ...
- Django框架导读
1.虚拟环境的安装 2.web应用 C/S B/S 架构 3.http协议介绍 4.状态码 5.原生socket 6.框架演变 7.项目演变 一.虚拟环境安装 什么是虚拟环境? 1.对真实环境的一个 ...
- Golang的select多路复用以及channel使用实践
看到有个例子实现了一个类似于核弹发射装置,在发射之前还是需要随时能输入终止发射. 这里就可以用到cahnnel 配合select 实现多路复用. select的写法用法有点像switch.但是和swi ...
- scrapy全站爬取拉勾网及CrawSpider介绍
一.指定模板创建爬虫文件 命令 创建成功后的模板,把http改为https 二.CrawSpider源码介绍 1.官网介绍: 这是用于抓取常规网站的最常用的蜘蛛,因为它通过定义一组规则为跟踪链接提供了 ...
- ansible的playbook简单使用
一.介绍 playbook就是一个用yaml语法把多个模块堆起来的一个文件 核心组件: Hosts:执行的远程主机列表Tasks:任务,由模块定义的操作的列表:Varniables:内置变量或自定义变 ...
- 莫烦keras学习自修第二天【backend配置】
keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置 ...