【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述
输入
输出
样例输入
8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
样例输出
6
题解
LCT维护子树信息
学了大神的LCT维护子树信息的方式,觉得还算好理解,于是自己yy了这道题。
我们知道,在LCT中的Splay Tree中,access某个点并splay到根,那么它的实儿子记录的信息是这条链的信息,并不是我们想要的子树信息。
而所有实儿子和虚儿子的信息才是我们想要求的子树信息。
但是由于虚儿子“儿子认爹,爹不认儿子”的性质,无法在pushup的时候上传信息。
事实上,我们注意到,对于Splay Tree的所有基本操作,除了access和link以外,都不会对虚儿子的信息进行修改。
那么我们每次在添加虚儿子时,顺便把虚儿子的信息也记录到父亲节点中。
这样我们每次调用一个节点时,将它Splay Tree中实儿子的信息,加上它自身的虚儿子的信息,就是我们想要的子树信息。
于是我们对于每个节点记录两个信息:它的总信息和它虚儿子的信息,pushup时更新x的总信息为:x实儿子的总信息+x虚儿子的信息+x本身的信息。
按照这种方法我们来思考这道题,可以发现所求的答案就是一条边两端点的子树大小乘积,我们把某一个端点定为整棵树的根,可以知道整棵树的大小,而根据另一个节点可以知道一个子树的大小,相减即为另一个子树的大小。
具体的实现:
access操作中割断了实边c[1][x],该边变为了虚边,所以应该加到x的虚儿子信息中,加入了实边t,该边不再是虚边,所以应从x的虚儿子信息中减去。
link操作中为了在加入x时同时更新y的信息,需要makeroot(x),makeroot(y),然后连x->y的虚边(实际上只需要access(y)和splay(y))。
其余的操作,和普通的LCT没有任何区别。
代码中需要注意的是,sum[x]存的是总信息(子树大小),si[x]存的是虚儿子信息(子树除了链以外的大小),不要弄混。
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int fa[N] , c[2][N] , si[N] , sum[N] , rev[N];
char str[5];
void pushup(int x)
{
sum[x] = sum[c[0][x]] + sum[c[1][x]] + si[x] + 1;
}
void pushdown(int x)
{
if(rev[x])
{
int l = c[0][x] , r = c[1][x];
swap(c[0][l] , c[1][l]) , swap(c[0][r] , c[1][r]);
rev[l] ^= 1 , rev[r] ^= 1 , rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , si[x] += sum[c[1][x]] - sum[t] , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] = 1;
}
void split(int x , int y)
{
makeroot(x) , makeroot(y);
}
void link(int x , int y)
{
split(x , y) , fa[x] = y , si[y] += sum[x] , pushup(y);
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) sum[i] = 1;
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'A') link(x , y);
else split(x , y) , printf("%lld\n" , (long long)sum[x] * (sum[y] - sum[x]));
}
return 0;
}
【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息的更多相关文章
- BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...
- bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...
- [BJOI2014]大融合 LCT维护子树信息
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...
- Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...
- bzoj 4530 大融合 —— LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 用LCT维护子树 size,就是实边和虚边分开维护: 看博客:https://blog ...
- 大融合——LCT维护子树信息
题目 [题目描述] 小强要在 $N$ 个孤立的星球上建立起一套通信系统.这套通信系统就是连接 $N$ 个点的一个树.这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树 ...
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
随机推荐
- webRequest封装
from requests.models import Response import requests import random import time class WebRequest(obje ...
- Nginx反向代理后端多节点下故障节点的排除思路
仔细想来,其实是个非常简单的问题:开发和运维觉得两个后端节点跑起来压力太大了,就扩充了两个新的后端节点上去,这一加就出问题了,访问时页面间歇性丢失,这尼玛什么情况...想了半天没思路,查了Nginx的 ...
- eureka集群基于DNS配置方式
https://www.cnblogs.com/relinson/p/eureka_ha_use_dns.html 最近在研究spring cloud eureka集群配置的时候碰到问题:多台eu ...
- 洛谷P3620 数据备份
好吧,我一开始说这是个神级数据结构毒瘤题,后来改成神题了. 主要是贪心做法的巧妙转化: 首先发现选择的一对必须相邻,于是我们搞出差分. 然后考虑选取最小值时,最小值两侧的数要么同时选,要么都不选. 然 ...
- vue2.0项目实战(3)使用axios发送请求
在Vue1.0的时候有一个官方推荐的 ajax 插件 vue-resource,但是自从 Vue 更新到 2.0 之后,官方就不再更新 vue-resource. 关于为什么放弃推荐? -> 尤 ...
- 使用selenium 模拟人操作请求网页
首先要 pip install selenium 安装插件 然后要下载驱动驱动根据你的浏览器 Chrome selenium 驱动下载地址 http://chromedriver.storage. ...
- ImageMagick: win7 | win8 & uac (用户帐户控制) 注册表的一些事
现在用win7,win8的人越来越多了, 程序在一些 win 7, win8 上运行会遇到一些之前没想过的兼容性问题. 比如 64位系统运行32位程序时的注册表重定向,还有因为 uac (用户帐户控制 ...
- Day035--Python--管道, Manager, 进程池, 线程切换
管道 #创建管道的类: Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process ...
- 基于TC做流量控制
1 模拟延迟传输简介 netem 与 tc: netem 是 Linux 2.6 及以上内核版本提供的一个网络模拟功能模块.该功能模块可以用来在性能良好的局域网中,模拟出复杂的互联网传输性能,诸如低带 ...
- maven编译或者打包web项目显示“软件包 javax.servlet.http 不存在"
2.解决办法: 这是由于缺少servlet-api.jar包,其实tomcat下有,但是在java build path把他加载过来,还是报这个错误,所以我们直接在pom.xml里面加入这个jar包即 ...