题目描述

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。
这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问。

输入

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。
接下来的Q行,每行是如下两种格式之一:
A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。
Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。
1≤N,Q≤100000

输出

对每个查询操作,输出被查询的边的负载。

样例输入

8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8

样例输出

6


题解

LCT维护子树信息

学了大神的LCT维护子树信息的方式,觉得还算好理解,于是自己yy了这道题。

我们知道,在LCT中的Splay Tree中,access某个点并splay到根,那么它的实儿子记录的信息是这条链的信息,并不是我们想要的子树信息。

而所有实儿子和虚儿子的信息才是我们想要求的子树信息。

但是由于虚儿子“儿子认爹,爹不认儿子”的性质,无法在pushup的时候上传信息。

事实上,我们注意到,对于Splay Tree的所有基本操作,除了access和link以外,都不会对虚儿子的信息进行修改。

那么我们每次在添加虚儿子时,顺便把虚儿子的信息也记录到父亲节点中。

这样我们每次调用一个节点时,将它Splay Tree中实儿子的信息,加上它自身的虚儿子的信息,就是我们想要的子树信息。

于是我们对于每个节点记录两个信息:它的总信息和它虚儿子的信息,pushup时更新x的总信息为:x实儿子的总信息+x虚儿子的信息+x本身的信息。

按照这种方法我们来思考这道题,可以发现所求的答案就是一条边两端点的子树大小乘积,我们把某一个端点定为整棵树的根,可以知道整棵树的大小,而根据另一个节点可以知道一个子树的大小,相减即为另一个子树的大小。

具体的实现:

access操作中割断了实边c[1][x],该边变为了虚边,所以应该加到x的虚儿子信息中,加入了实边t,该边不再是虚边,所以应从x的虚儿子信息中减去。

link操作中为了在加入x时同时更新y的信息,需要makeroot(x),makeroot(y),然后连x->y的虚边(实际上只需要access(y)和splay(y))。

其余的操作,和普通的LCT没有任何区别。

代码中需要注意的是,sum[x]存的是总信息(子树大小),si[x]存的是虚儿子信息(子树除了链以外的大小),不要弄混。

#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int fa[N] , c[2][N] , si[N] , sum[N] , rev[N];
char str[5];
void pushup(int x)
{
sum[x] = sum[c[0][x]] + sum[c[1][x]] + si[x] + 1;
}
void pushdown(int x)
{
if(rev[x])
{
int l = c[0][x] , r = c[1][x];
swap(c[0][l] , c[1][l]) , swap(c[0][r] , c[1][r]);
rev[l] ^= 1 , rev[r] ^= 1 , rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , si[x] += sum[c[1][x]] - sum[t] , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] = 1;
}
void split(int x , int y)
{
makeroot(x) , makeroot(y);
}
void link(int x , int y)
{
split(x , y) , fa[x] = y , si[y] += sum[x] , pushup(y);
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) sum[i] = 1;
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'A') link(x , y);
else split(x , y) , printf("%lld\n" , (long long)sum[x] * (sum[y] - sum[x]));
}
return 0;
}

【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息的更多相关文章

  1. BZOJ4530[Bjoi2014]大融合——LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...

  2. bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...

  3. [BJOI2014]大融合 LCT维护子树信息

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...

  4. Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)

    链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...

  5. bzoj 4530 大融合 —— LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 用LCT维护子树 size,就是实边和虚边分开维护: 看博客:https://blog ...

  6. 大融合——LCT维护子树信息

    题目 [题目描述] 小强要在 $N$ 个孤立的星球上建立起一套通信系统.这套通信系统就是连接 $N$ 个点的一个树.这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树 ...

  7. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

  8. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  9. BZOJ4530:[BJOI2014]大融合(LCT)

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

随机推荐

  1. webRequest封装

    from requests.models import Response import requests import random import time class WebRequest(obje ...

  2. Nginx反向代理后端多节点下故障节点的排除思路

    仔细想来,其实是个非常简单的问题:开发和运维觉得两个后端节点跑起来压力太大了,就扩充了两个新的后端节点上去,这一加就出问题了,访问时页面间歇性丢失,这尼玛什么情况...想了半天没思路,查了Nginx的 ...

  3. eureka集群基于DNS配置方式

    https://www.cnblogs.com/relinson/p/eureka_ha_use_dns.html   最近在研究spring cloud eureka集群配置的时候碰到问题:多台eu ...

  4. 洛谷P3620 数据备份

    好吧,我一开始说这是个神级数据结构毒瘤题,后来改成神题了. 主要是贪心做法的巧妙转化: 首先发现选择的一对必须相邻,于是我们搞出差分. 然后考虑选取最小值时,最小值两侧的数要么同时选,要么都不选. 然 ...

  5. vue2.0项目实战(3)使用axios发送请求

    在Vue1.0的时候有一个官方推荐的 ajax 插件 vue-resource,但是自从 Vue 更新到 2.0 之后,官方就不再更新 vue-resource. 关于为什么放弃推荐? -> 尤 ...

  6. 使用selenium 模拟人操作请求网页

    首先要 pip install selenium  安装插件 然后要下载驱动驱动根据你的浏览器 Chrome  selenium 驱动下载地址 http://chromedriver.storage. ...

  7. ImageMagick: win7 | win8 & uac (用户帐户控制) 注册表的一些事

    现在用win7,win8的人越来越多了, 程序在一些 win 7, win8 上运行会遇到一些之前没想过的兼容性问题. 比如 64位系统运行32位程序时的注册表重定向,还有因为 uac (用户帐户控制 ...

  8. Day035--Python--管道, Manager, 进程池, 线程切换

    管道 #创建管道的类: Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process ...

  9. 基于TC做流量控制

    1 模拟延迟传输简介 netem 与 tc: netem 是 Linux 2.6 及以上内核版本提供的一个网络模拟功能模块.该功能模块可以用来在性能良好的局域网中,模拟出复杂的互联网传输性能,诸如低带 ...

  10. maven编译或者打包web项目显示“软件包 javax.servlet.http 不存在"

    2.解决办法: 这是由于缺少servlet-api.jar包,其实tomcat下有,但是在java build path把他加载过来,还是报这个错误,所以我们直接在pom.xml里面加入这个jar包即 ...