CNN 主要解决 computer vision 问题,同时解决input X 维度太大的问题.

  

  

  

Edge detection

下面演示了convolution 的概念

  

下图的 vertical edge 看起来有点厚,但是如果图片远比6x6像素大的话,就会看到效果非常不错.

  

  

  

除了前面讲过的第一种filter, 还有两种 (Sobel filter, Scharr filter)

  

接下来会讲到 CNN 的两个重要的buiding block - padding, strided convolution. 也就是对前面所讲的basic convolution 的两种优化。

Padding

basic convolution 有两个问题, 一个是shrik output, 使得图像越来越小, 另一个是 throw away info from edge, 就是边缘的信息使用率不高. 为了解决这两个问题,在input image外围加了一个边框,就是padding.

  

那么怎么来选取padding 值的大小呢?有两种方法 'Valid' (no padding), 和 'Same' (output size is same as input size). 要达到Same 的效果,只需要满足 p = (f-1)/2。 f 值通常选取奇数,Andrew 给出两个原因,一个是可以达到Same的效果,一个是可以在filter 里有center pixel 来描述位置.

  

Strided convolution

如果要使得output size 更小,可以用strided convolution 方法,就是计算卷积的时候使得步长s更大。

  

  

实际上在deep learing 里经常说的convolution 对应的是数学概念里的cross-correlation, 两者的区别是,数学里的convolution 比cross-correlation 多一步对filter翻转的操作. 也就是说deep learning里的convoluton 叫做cross-correlation更确切一些。但是翻转那一步对deep learning 没有影响,所以deep learning 里就用convolution 来指代cross-correlation. Andrew 提到这个是为了让读者在读数学论文时候不至于困惑。

  

Convolution over volumes

前面讲的都是对2D 的image有卷积,现在开始讲对3D 的image 怎么求卷积。

  

  

前面一直在讲用一个filter 来识别 vertical 或者 horizotal edge, 那如果要同时识别vertical 和 horizotal edge呢?答案是可以同时使用两个filter, 具体如下图。

这里提一下,第3个维度可以叫channel, 也有人叫depth.

  

One Layer of convolutional network

一层convolution network 可以和传统的neural network 类比如下图。

  

  

下图解释了convolutional network 中,无论input layer  的 X 维度多大(比如5000维),我们都可以用这10个filter 来充当W[1] 的角色,同时保持280个parameters不变。

  

下面是CNN中的一些notation. 需要说明的是本课程用了n[H][l] * n[W][l] * n[C][l] 这样的顺序,在CNN里也有用 n[C][l] * n[H][l] * n[W][l] 这样的顺序,效果一样.

  

Simple convolutional network example

下图是一个多层ConvNet 网络,通常image size 会逐渐减小,而channel size会逐渐增大.

  

通常一个convolutional network里不仅有convoluional layer, 还会经常看到 pooling layer, 和fully connected layer.

  

Pooling layers

先看Max pooling, 就是根据filter 的大小在input image里取最大值。一旦filter 的维度f 和步长 s 确定了,就可以从input里得出output, 无需计算filter 的参数。

  

刚才是看的2D的情况,如果input lay 是3D的就是说有channel, 那么output 也会有相同的channel.

  

Max pooling 是求最大值,如果是求平均值,就叫average pooling. Average pooling 不常用.

  

通常padding=0. f, s 最常见的值如下图.

  

Typical CNN example

按照习惯conv layer 和 pooling layer 合起来叫一个network layer, 这是只计算了有weight 的conv layer 而pooling layer 没有weight 就没有算.

FC means Fully Connected layer. 其实就是传统的network layer.

  

  

Why convolutions?

相比于传统的fully connected network layer, convolutional layer 的parameters少的多.

  

为什么parameters 少了那么多,还能达到很好的performance呢?

有以下两个原因:

 feature sharing: 共享了3x3的filter,这个filter 的参数对每次convolutional 计算都是一样的。

 sparsity of connections: output 中的一部分只取决于 input 中的一部分。

  

  

Coursera, Deep Learning 4, Convolutional Neural Networks - week1的更多相关文章

  1. Coursera, Deep Learning 4, Convolutional Neural Networks - week4,

    Face recognition One Shot Learning 只看一次图片,就能以后识别, 传统deep learning 很难做到这个. 而且如果要加一个人到数据库里面,就要重新train ...

  2. Coursera, Deep Learning 4, Convolutional Neural Networks - week2

    Case Study (Note: 红色表示不重要) LeNet-5 起初用来识别手写数字灰度图片 AlexNet 输入的是227x227x3 的图片,输出1000 种类的结果 VGG VGG比Ale ...

  3. Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection

    学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...

  4. Deep Learning Tutorial - Convolutional Neural Networks(LENET)

    CNN很多概述和要点在CS231n.Neural Networks and Deep Learning中有详细阐述,这里补充Deep Learning Tutorial中的内容.本节前提是前两节的内容 ...

  5. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  6. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  9. 论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    前言 CVPR2016 来自Korea的POSTECH这个团队   大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法 ...

随机推荐

  1. QML学习笔记(二)-纯qml画图实现canvas画板-鼠标画图

    作者: 狐狸家的鱼 Github: 八至 版权声明:如需转载请获取授权和联系作者 用纯qml实现canvas画板功能,用鼠标进行画图,可以画直线,画圆,画矩形,画弧线. 由于canvas画图会有延迟和 ...

  2. [USACO18JAN]Sprinklers

    [USACO18JAN]Sprinklers 一个矩形要符合什么条件 右上角的右上有点,左下角的左下有点 所以每列的选择高度为一个区间,小于后缀最大值大于前缀最小值(不管是作为右上角还是左下角) 然后 ...

  3. day02作业

    1.判断下列逻辑语句的True,False. 1),1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 < 6 tru ...

  4. appium desktop 1.7 byName不能用,重写

    @Override public WebElement findElementByName(String name){ String string="new UiSelector().tex ...

  5. ASCLL、Unicode和UTF-8编码的理解

    我们已经讲过了,字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特(bit) ...

  6. ELK大流量日志分析系统搭建

    1.首先说下EKL到底是什么吧? ELK是Elasticsearch(相当于仓库).Logstash(相当于旷工,挖矿即采集数据).Kibana(将采集的数据展示出来)的简称,这三者是核心套件,但并非 ...

  7. Vue(基础七)_webpack(CommonsChunkPlug的使用)

    ---恢复内容开始--- 一.前言 1.多入口文件配置                               2.CommonsChunkPlugin的用法                   ...

  8. WCF博文链接

    我的基于WCF的SOA架构项目实战 http://www.uml.org.cn/soa/201112201.asp WCF实战(一):创建服务器类 https://blog.csdn.net/qium ...

  9. mysql全备份脚本速查

    mysql全备份脚本 # 快捷备份方式[root@nb scripts]# cat db.backup.sh #!/bin/bashmysqldump -ubackup -pbackuppwd -P3 ...

  10. Java案例整理

    1.随机点名器案例 1.1      案例介绍 随机点名器,即在全班同学中随机的找出一名同学,打印这名同学的个人信息. 此案例在我们昨天课程学习中,已经介绍,现在我们要做的是对原有的案例进行升级,使用 ...