tensorflow faster rann
github 上大神的代码 https://github.com/endernewton/tf-faster-rcnn.git
在自己跑的过程中的问题:
1. 数据集的问题:
作者实现了 voc,coco数据集接口。由于我要跑自己的数据,所以要重写数据接口。为了方便我将自己的数据格式改为voc的数据格式,使用原来voc的数据接口pascal_voc.py。
voc 数据格式中需要文件:
data
-----VOCdevkit2007 (自己可以改)
|
----VOC2007
|
-----Annotations (目标的标注文件.xml)
-----ImageSets
|
----- trainval.txt (用于训练的图像名)
----- test.txt (用于测试的图像名)
-----JPEGImages (jpg 图像)
具体 .xml 文件编写根据自己已有的数据
写xml 文件主要内容:
from xml.dom.minidom import Document doc=Document()
Annotation=doc.createElement('annotation') # 创建annotation 域
doc.appendChild(Annotation) # 写入annotation 域 object=doc.createElement('object')
Annotation.appendChild('object') # 写入name
object_name=doc.createElement('name')
object_name_text=doc.createTextNode('分类类别名')
object_name.appendChild(object_name_text)
object.appendChild(object_name) # 写入difficult,虽然不用,但是如果不加直接使用pascal_voc会出错
object_difficult=doc.createElement('difficult')
object_difficult_text=doc.createTextNode('0')
object_difficult.appendChild(object_difficult_text)
object.appendChild(object_difficult) # 写入box
bndbox=doc.createElement('bndbox')
object.appendChild(bndbox) object_box=doc.createElement('bndbox')
object_box_xmin=doc.createElement('xmin')
object_box_xmin_text=doc.createTextNode(str(image_box[0]))
object_box_xmin.appendChild(object_box_xmin_text)
bndbox.appendChild(object_box_xmin) object_box_ymin=doc.createElement('ymin')
object_box_ymin_text=doc.createTextNode(str(image_box[1]))
object_box_ymin.appendChild(object_box_ymin_text)
bndbox.appendChild(object_box_ymin) object_box_xmax=doc.createElement('xmax')
object_box_xmax_text=doc.createTextNode(str(image_box[2]))
object_box_xmax.appendChild(object_box_xmax_text)
bndbox.appendChild(object_box_xmax) object_box_ymax=doc.createElement('ymax')
object_box_ymax_text=doc.createTextNode(str(image_box[3]))
object_box_ymax.appendChild(object_box_ymax_text)
bndbox.appendChild(object_box_ymax) f=open(filename,"w")
f.write(doc.toprettyxml(indent=" "))
f.close()
得到:
<annotation>
<object>
<name>abc</name>
<difficult>0</difficult>
<bndbox>
<xmin>107</xmin>
<ymin>155</ymin>
<xmax>193</xmax>
<ymax>214</ymax>
</bndbox>
</object>
</annotation>
改pascal_voc.py 文件,修改自己的classes,以及xml中对应域的名字等。
2. 数据完成之后,就可以用来训练了,此时出现问题:
Assign requires shapes of both tensors to match. lhs shape= [2048,124] rhs shape= [2048,84]
因为我现在变为30类,30+1 (背景),31*4=124 (4为box 的定位),而原来为84类。
怎么改最后的输出类别个数?在caffe中可以直接在prototxt 定义的网络结构中改,在tensorflow中怎么改呢?
- 我们执行train_faster_rcnn 传入了(gpuId, dataset, net) 调用tools/trainval_net.py
- 在trainval_net.py 中调用net=resnetv1, load 网络模型, 调用models/train_net
- 在train_net 中调用train_model 函数,定义计算图,在initialize 函数中对sess 进行初始化
def initialize(self, sess):
# Initial file lists are empty
np_paths = []
ss_paths = []
# Fresh train directly from ImageNet weights
print('Loading initial model weights from {:s}'.format(self.pretrained_model))
variables = tf.global_variables()
# Initialize all variables first
sess.run(tf.variables_initializer(variables, name='init'))
var_keep_dic = self.get_variables_in_checkpoint_file(self.pretrained_model)
# Get the variables to restore, ignoring the variables to fix
variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic)
# 要加载的变量
restorer = tf.train.Saver(variables_to_restore)
# 进行加载。。出错的地方就是这里
restorer.restore(sess, self.pretrained_model)
print('Loaded.')
# Need to fix the variables before loading, so that the RGB weights are changed to BGR
# For VGG16 it also changes the convolutional weights fc6 and fc7 to
# fully connected weights
self.net.fix_variables(sess, self.pretrained_model)
print('Fixed.')
last_snapshot_iter = 0
rate = cfg.TRAIN.LEARNING_RATE
stepsizes = list(cfg.TRAIN.STEPSIZE) return rate, last_snapshot_iter, stepsizes, np_paths, ss_paths
要改正,就要不加载最后的 预测层和 box 回归层。
对要加载的文件进行选择,然后就可训练自己的数据了
tensorflow faster rann的更多相关文章
- tensorflow faster rcnn 代码分析一 demo.py
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...
- Tensorflow faster rcnn系列一
注意:本文主要是学习用,发现了一个在faster rcnn训练流程写的比较详细的博客. 大部分内容来自以下博客连接:https://blog.csdn.net/weixin_37203756/arti ...
- python3 + Tensorflow + Faster R-CNN训练自己的数据
之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:http ...
- Faster_Rcnn在windows下运行踩坑总结
Faster_Rcnn在windows下运行踩坑总结 20190524 今天又是元气满满的一天! 1.代码下载 2.编译 3.下载数据集 4.下载pre-train Model 5.运行train ...
- TensorFlow_Faster_RCNN中demo.py的运行(CPU Only)
GitHub项目地址,https://github.com/endernewton/tf-faster-rcnnTensorflow Faster RCNN for Object Detection. ...
- Technology Document Guide of TensorRT
Technology Document Guide of TensorRT Abstract 本示例支持指南概述了GitHub和产品包中包含的所有受支持的TensorRT 7.2.1示例.Tensor ...
- 新人如何运行Faster RCNN的tensorflow代码
0.目的 刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下 ...
- Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程
本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇 推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu 原文见:https://hom ...
- TensorFlow Object Detection API中的Faster R-CNN /SSD模型参数调整
关于TensorFlow Object Detection API配置,可以参考之前的文章https://becominghuman.ai/tensorflow-object-detection-ap ...
随机推荐
- Ubuntu18.04 下 VirtualBox or VMWare 虚拟化问题
This host supports Intel VT-x, but Intel VT-x is disabled.Intel VT-x might be disabled if it has bee ...
- 搭建简易的WebServer(基于pyhton实现简易Web框架 使用socket套接字)
1. 使用web底层socket的方式实现简易服务器的搭建,用来理解学习 # 1.导入socket模块 import socket import re import gevent import sys ...
- POJ--1056 IMMEDIATE DECODABILITY && POJ--3630 Phone List(字典树)
题目链接 题目大意 看输入的每个字符串中是否有一个字符串是另一个字符串的前缀 #include<iostream> #include<cstring> #include< ...
- axios请求、返回拦截器
1.http 请求拦截器 axios.interceptors.request.use(function(config){ //在发送请求之前做些什么 return config }), functi ...
- tyvj/joyoi 1374 火车进出栈问题(水水版)
我受不了了. Catalan数第100项,30000项,50000项,cnm 这tm哪里是在考数学,分明是在考高精度,FFT...... 有剧毒! 我只得写高精度,只能过100的那个题,两个进化版超时 ...
- 【P2303】Longge的问题
题目大意:求\[\sum\limits_{i=1}^ngcd(n,i)\] 题解:发现 gcd 中有很多是重复的,因此考虑枚举 gcd. \[\sum\limits_{i=1}^ngcd(n,i)=\ ...
- notepad问题汇总
右键无法设置为默认打开方式:https://blog.csdn.net/jl1134069094/article/details/50749075
- 在android模拟器上http 链接的图片地址可能不会显示
AndroidStudio将targetSDK升为28后,http请求会无反应.Google表示,为保证用户数据和设备的安全,针对下一代 Android 系统(Android P) 的应用程序,将要求 ...
- Java 存储时间戳的几种方式
有时需要记录一下数据生成时间的时间戳,精确到秒,这里记录一下java存储时间戳字符串的几种方式 1.DateFormat private static final SimpleDateFormat s ...
- #ifndef HeaderName_h #define HeaderName_h #endif 使用详解(转)
原文:#ifndef HeaderName_h #define HeaderName_h #endif 使用详解 想必很多人都看到过头文件中写有:#ifndef HeaderName_h ...