Distance on the tree

https://nanti.jisuanke.com/t/38229

DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(National Olympiad in Informatics in Provinces) in Senior High School. So when in Data Structure Class in College, he is always absent-minded about what the teacher says.

The experienced and knowledgeable teacher had known about him even before the first class. However, she didn't wish an informatics genius would destroy himself with idleness. After she knew that he was so interested in ACM(ACM International Collegiate Programming Contest), she finally made a plan to teach him to work hard in class, for knowledge is infinite.

This day, the teacher teaches about trees." A tree with nn nodes, can be defined as a graph with only one connected component and no cycle. So it has exactly n-1n−1 edges..." DSM is nearly asleep until he is questioned by teacher. " I have known you are called Data Structure Master in Graph Theory, so here is a problem. "" A tree with nn nodes, which is numbered from 11 to nn. Edge between each two adjacent vertexes uuand vv has a value w, you're asked to answer the number of edge whose value is no more than kk during the path between uu and vv."" If you can't solve the problem during the break, we will call you DaShaMao(Foolish Idiot) later on."

The problem seems quite easy for DSM. However, it can hardly be solved in a break. It's such a disgrace if DSM can't solve the problem. So during the break, he telephones you just for help. Can you save him for his dignity?

Input

In the first line there are two integers n,mn,m, represent the number of vertexes on the tree and queries(2 \le n \le 10^5,1 \le m \le 10^52≤n≤105,1≤m≤105)

The next n-1n−1 lines, each line contains three integers u,v,wu,v,w, indicates there is an undirected edge between nodes uu and vv with value ww. (1 \le u,v \le n,1 \le w \le 10^91≤u,v≤n,1≤w≤109)

The next mm lines, each line contains three integers u,v,ku,v,k , be consistent with the problem given by the teacher above. (1 \le u,v \le n,0 \le k \le 10^9)(1≤u,v≤n,0≤k≤109)

Output

For each query, just print a single line contains the number of edges which meet the condition.

样例输入1复制

3 3
1 3 2
2 3 7
1 3 0
1 2 4
1 2 7

样例输出1复制

0
1
2

样例输入2复制

5 2
1 2 1000000000
1 3 1000000000
2 4 1000000000
3 5 1000000000
2 3 1000000000
4 5 1000000000

样例输出2复制

2
4 题意:给一颗树,有m次询问,每次询问 u v w,求u到v的路径中有多少边权值<=w。
思路:第一次遇到这种题目(还是太菜= =),lca+主席树
以1为根结点,在跑dfs时建立主席树,查询某点时查询根结点到该点有多少条小于等于k的路径,像求lca一样,答案就是查询的那两条路径上的答案 减去 两倍的 根节点到它们最近公共祖先的答案
 #include<bits/stdc++.h>
#define ll long long
#define maxn 100005
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define pb push_back
#define pii pair<int,int>
using namespace std; vector<pii>ve[maxn];
int fa[maxn][],deep[maxn];
int n;
struct sair{
int l,r,v;
}tree[maxn*];
int root[maxn],cnt; void add(int pre,int now,int val,int l,int r){
tree[now].v=tree[pre].v+;
if(l==r){
return;
}
int mid=l+r>>;
if(val<=mid){
tree[now].l=++cnt;
tree[now].r=tree[pre].r;
add(tree[pre].l,tree[now].l,val,l,mid);
}
else{
tree[now].r=++cnt;
tree[now].l=tree[pre].l;
add(tree[pre].r,tree[now].r,val,mid+,r);
}
} int query(int now,int val,int l,int r){
if(l==r){
return tree[now].v;
}
int mid=l+r>>;
if(val<=mid){
return query(tree[now].l,val,l,mid);
}
else{
return tree[tree[now].l].v+query(tree[now].r,val,mid+,r);
}
} void dfs(int now,int pre,int dep){
deep[now]=dep;
fa[now][]=pre;
if(pre==) fa[now][]=now;
for(int i=;i<ve[now].size();i++){
if(ve[now][i].first!=pre){
if(!root[now]) root[now]=++cnt;
if(!root[ve[now][i].first]) root[ve[now][i].first]=++cnt;
add(root[now],root[ve[now][i].first],ve[now][i].second,,1e9+);
dfs(ve[now][i].first,now,dep+);
}
}
} void Init(){
for(int i=;i<=;i++){
for(int j=;j<=n;j++){
fa[j][i]=fa[fa[j][i-]][i-];
}
}
} int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=;i>=;i--){
if(deep[fa[x][i]]>=deep[y]){
x=fa[x][i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int m;
scanf("%d %d",&n,&m);
int u,v,w;
for(int i=;i<n;i++){
scanf("%d %d %d",&u,&v,&w);
ve[u].pb({v,w});
ve[v].pb({u,w});
}
dfs(,,);
Init();
while(m--){
scanf("%d %d %d",&u,&v,&w);
int ans=query(root[u],w,,1e9+)+query(root[v],w,,1e9+);
ans-=query(root[lca(u,v)],w,,1e9+)*;
printf("%d\n",ans);
} }
/*
3 3
1 3 2
2 3 7
1 3 0
1 2 4
1 2 7
*/

Distance on the tree的更多相关文章

  1. ural1471 Distance in the Tree

    Distance in the Tree Time limit: 1.0 secondMemory limit: 64 MB A weighted tree is given. You must fi ...

  2. 南昌网络赛J. Distance on the tree 树链剖分+主席树

    Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...

  3. 南昌网络赛J. Distance on the tree 树链剖分

    Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...

  4. 2019南昌邀请赛网络预选赛 J.Distance on the tree(树链剖分)

    传送门 题意: 给出一棵树,每条边都有权值: 给出 m 次询问,每次询问有三个参数 u,v,w ,求节点 u 与节点 v 之间权值 ≤ w 的路径个数: 题解: 昨天再打比赛的时候,中途,凯少和我说, ...

  5. Distance on the tree(数剖 + 主席树)

    题目链接:https://nanti.jisuanke.com/t/38229 题目大意:给你n个点,n-1条边,然后是m次询问,每一次询问给你u,v,w然后问你从u -> v 的路径上有多少边 ...

  6. 南昌网络赛 Distance on the tree 主席树+树剖 (给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数。)

    https://nanti.jisuanke.com/t/38229 题目: 给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数. #include <bits/stdc++.h ...

  7. 2019南昌邀请赛网络赛:J distance on the tree

    1000ms 262144K   DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...

  8. 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树

    边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...

  9. 【树形dp】【CF161D】distance on a tree + 【P1352】没有上司的舞会

    T1题面: 输入点数为N一棵树 求树上长度恰好为K的路径个数 (n < 1e5, k < 500) 这是今天的考试题,也是一道假的紫题,因为我一个根本不会dp的蒟蒻只知道状态就一遍A掉了- ...

随机推荐

  1. ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (13)解答

    我在使用mysqll客户端连接我的mysql服务器的时候,出现了上述的问题.我的操作系统是ubuntu,安装版本是对应的64位服务器.我的服务器的启动方式是sudo service mysql sta ...

  2. 将mnist获得的数据还原成图片形式

    MNIST是一个手写数字数据集,里面所包含的数据元素是类似于一个1×784矩阵和1×10矩阵的结构,那么,如何将这些数据元素转化为更加直观的图像呢?通过以下python代码,可以实现. from PI ...

  3. sqoop的安装

    Sqoop是一个用来完成Hadoop和关系型数据库中的数据相互转移的工具, 他可以将关系型数据库(MySql,Oracle,Postgres等)中的数据导入Hadoop的HDFS中, 也可以将HDFS ...

  4. Hashtable与ConcurrentHashMap区别(转)

    转载地址: https://blog.csdn.net/wisgood/article/details/19338693

  5. (转)并发编程 – Concurrent 用户指南

    原文出处: 高广超 译序 本指南根据 Jakob Jenkov 最新博客翻译,请随时关注博客更新:http://tutorials.jenkov.com/java-util-concurrent/in ...

  6. golang初识2

    1. 赋值与申明 str := "Hello, WebAssembly" // 简短声明 标准格式: var str string str = "Hello, WebAs ...

  7. Python课程第二天作业

     一.统计字符串格式 要求: # 1.统计元组中所有数据属于字符串的个数,提示: isinstance() # 数据: t1 = (1, 2, '3', '4', 5, '6') # 结果: 3 代码 ...

  8. Anatomy of a Database System学习笔记 - 存储管理

    使用裸设备,还是使用文件系统?   描述 pros cons 裸设备 顺序读磁盘快比随机要快10-100倍,DB比OS更懂磁盘负载,因此很多DB是直接管理数据块如何存放的. DB对裸设备的管理,比文件 ...

  9. QTP测试.NET程序的时候,找不到对象或无法录制的解决方案

    解决方案: .NET程序编译的时候:目标平台必须设置为x86,否则QTP找不到对象,不会完成录制

  10. 深入理解Java虚拟机读书笔记1----Java内存区域与HotSpot虚拟机对象

    一 Java内存区域与HotSpot虚拟机对象 1 Java技术体系.JDK.JRE?     Java技术体系包括:         · Java程序设计语言:         · 各种硬件平台上的 ...