Why Did the Cow Cross the Road III HYSBZ - 4991 -CDQ-逆序数
- HYSBZ - 4991
题意: 第一列 1-n的排列 ,第二列 1-n的排列。 相同数字连边 ,问 有多少组 数字 是有交点的并且 绝对值之差>K
思路:处理一下 1-n 在第一列的位置,1-n在第二列的位置。按照第一列的位置从小到大排序,然后 进行cdq分治,
因为现在第一列已经是递增序列了,如果在第二列中出现了递减那么这两个数就有交点,分治解决,递归左区间
的必然第一列必然小于递归右区间。所以只处理左区间对右区间的影响,两段小区间分别按照 b 从大到小排序,
然后 统计 左区间的b 比右区间大的树状数组更新那个数字。然后更新完成之后查询, 右区间当前的数
(绝对值之差>K无非就是, < x-k 有多少 , > x+k有多少)分别 树状数组进行查询,进行完成之后 ,
数组数组恢复最初状态,回溯 继续处理大区间即可#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 100010
struct node
{
int num,a,b;
} data[maxn];
bool cp(node x,node y)
{
return x.a<y.a;
};
bool cp2(node x,node y)
{
return x.b>y.b;
};
int tree[maxn],n,k,x;
ll ans;
int lowbit(int x)
{
return x&(-x);
}
void add(int x,int ad)
{
while(x<=n)
{
tree[x]+=ad;
x+=lowbit(x);
}
}
int query(int x)
{
int re=0;
while(x>0)
{
re+=tree[x];
x-=lowbit(x);
}
return re;
}
void cdq(int l,int r)
{
if(l==r)return ;
int mid=(l+r)>>1;
cdq(l,mid);
cdq(mid+1,r);
sort(data+l,data+1+mid,cp2);
sort(data+mid+1,data+1+r,cp2);
int i=l,j=mid+1;
for(; j<=r; j++)
{
while(data[i].b>data[j].b&&i<=mid)
{
add(data[i].num,1);
i++;
}
ans+=query(data[j].num-k-1);
if(data[j].num+k<n)ans+=query(n)-query(data[j].num+k);
}
for(j=l; j<i; j++)
add(data[j].num,-1);
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=1; i<=n; i++)
{
scanf("%d",&x);
data[i].num=i;
data[x].a=i;
}
for(int j=1; j<=n; j++)
{
scanf("%d",&x);
data[x].b=j;
}
sort(data+1,data+1+n,cp);
cdq(1,n);
printf("%lld\n",ans);
return 0;
}
Why Did the Cow Cross the Road III HYSBZ - 4991 -CDQ-逆序数的更多相关文章
- [USACO17FEB]Why Did the Cow Cross the Road III P(CDQ分治)
题意 两列$n$的排列,相同的数连边,如果一对数有交叉且差的绝对值$>k$,则$++ans$,求$ans$ 题解 可以把每一个数字看成一个三元组$(x,y,z)$,其中$x$表示在第一列的位置, ...
- Why Did the Cow Cross the Road III(树状数组)
Why Did the Cow Cross the Road III 时间限制: 1 Sec 内存限制: 128 MB提交: 65 解决: 28[提交][状态][讨论版] 题目描述 The lay ...
- 洛谷 P3663 [USACO17FEB]Why Did the Cow Cross the Road III S
P3663 [USACO17FEB]Why Did the Cow Cross the Road III S 题目描述 Why did the cow cross the road? Well, on ...
- [USACO17FEB]Why Did the Cow Cross the Road III P
[USACO17FEB]Why Did the Cow Cross the Road III P 考虑我们对每种颜色记录这样一个信息 \((x,y,z)\),即左边出现的位置,右边出现的位置,该颜色. ...
- [USACO17FEB]Why Did the Cow Cross the Road III S
题目描述 Why did the cow cross the road? Well, one reason is that Farmer John's farm simply has a lot of ...
- [BZOJ4989][Usaco2017 Feb]Why Did the Cow Cross the Road 树状数组维护逆序对
4989: [Usaco2017 Feb]Why Did the Cow Cross the Road Time Limit: 10 Sec Memory Limit: 256 MBSubmit: ...
- 洛谷 P3660 [USACO17FEB]Why Did the Cow Cross the Road III G(树状数组)
题目背景 给定长度为2N的序列,1~N各处现过2次,i第一次出现位置记为ai,第二次记为bi,求满足ai<aj<bi<bj的对数 题目描述 The layout of Farmer ...
- bzoj 4991 [Usaco2017 Feb]Why Did the Cow Cross the Road III(cdq分治,树状数组)
题目描述 Farmer John is continuing to ponder the issue of cows crossing the road through his farm, intro ...
- 【题解】洛谷P3660 [USACO17FEB]Why Did the Cow Cross the Road III
题目地址 又是一道奶牛题 从左到右扫描,树状数组维护[左端点出现而右端点未出现]的数字的个数.记录每个数字第一次出现的位置. 若是第二次出现,那么删除第一次的影响. #include <cstd ...
随机推荐
- cf1110d 线性dp
很精练的一道题 /* dp[i][j][k]表示值i作为最大值结束的边剩k条,i-1剩下j条的情况的结果 dp[i][k][l]是由dp[i-1][j][k]的j决定的,因为k+l是被留下给后面用的, ...
- Linux基础三:linux目录结构和目录文件的浏览、管理及维护
目录文件的浏览.管理及维护(一) 1.Linux文件系统的层次结构 1)Linux文件系统的树状结构:在Linux或UNIX操作系统中,所有的文件和目录都被组织成一个以根节点开始的倒置的树状结构. 2 ...
- Nginx详解八:Nginx基础篇之Nginx请求限制的配置语法与原理
Nginx的请求限制: 连接频率的限制:limit_conn_module 配置语法:limit_conn_zone key zone=name:size;默认状态:-配置方法:http 配置语法:l ...
- jenkins 实现测试发布、预发布、真实发布、回滚发布
主要思路: 1.做三个文件夹,用于放置不可随意修改的配置文件(测试发布.预发布.真实发布) 2.每次都先修改配置文件再进行构建(构建时会先把配置文件复制到构建的目录,再同步到发布的目录) 3.发布完代 ...
- ajax beforeSend 写的显示隐藏代码不执行
ajax如果要写像下方格式 $.ajax({ url: ajaxurl, type: 'POST', dataType: 'json', async:true, data: { }, beforeSe ...
- 引用的作用&引用与指针的区别
引入 C语言中函数有两种传参的方式: 传值和传址.以传值方式, 在函数调用过程中会生成一份临时变量用形参代替, 最终把实参的值传递给新分配的临时变量即形参. 它的优点是避免了函数调用的一些副作用, 但 ...
- Ubuntu下安装kate编辑器
Ubuntu下安装kate编辑器 Ubuntu 下安装kate编辑器 #sudo apt-get install kate 安装kconsole #sudo apt-get install kco ...
- DapperHelper 帮助类
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- 实战--使用lvs实现四层负载均衡,转发到后端nginx
这个帖子讲得很细致,基本依照这个方案实践. 只是IP是按我自己虚拟机的IP来测试的. http://www.cnblogs.com/arjenlee/p/9262737.html ========== ...
- NetCore 生成RSA公私钥对,公钥加密私钥解密,私钥加密公钥解密
using Newtonsoft.Json; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Encodings; using ...