题意

题目链接

Sol

挂一个讲的看起来比较好的链接

然鹅我最后一步还是没看懂qwq。。

坐等SovietPower大佬发博客

#include<bits/stdc++.h>
using namespace std;
const int MAXN = (1 << 23) + 10, mod = 998244353, inv2 = (mod + 1) / 2, inv4 = 748683265, lim = 1048576;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN], po3[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
void FWT(int *a, int opt) {
for(int mid = 1; mid < lim; mid <<= 1)
for(int R = mid << 1, j = 0; j < lim; j += R)
for(int k = 0; k < mid; k++) {
int x = a[j + k], y = a[j + k + mid];
if(opt == 1) a[j + k] = add(x, y), a[j + k + mid] = add(x, -y);
else a[j + k] = mul(add(x, y), inv2), a[j + k + mid] = mul(add(x, -y), inv2);
}
}
int main() {
N = read();
for(int i = 1; i <= N; i++) a[read()]++;
FWT(a, 1);
po3[0] = 1;
for(int i = 1; i <= N; i++) po3[i] = mul(3, po3[i - 1]);
for(int i = 0; i < lim; i++) {
a[i] = add(mul(2, a[i]), N);
int c3 = mul(add(a[i], N), inv4);
a[i] = po3[c3];
if((N - c3) & 1) a[i] = mod - a[i];
}
FWT(a, -1);
cout << (a[0] - 1 + mod) % mod;
return 0;
}

UOJ#310. 【UNR #2】黎明前的巧克力(FWT)的更多相关文章

  1. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  2. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  3. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  4. UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...

  5. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  6. UOJ #310 黎明前的巧克力 (FWT)

    题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...

  7. UOJ310. 【UNR #2】黎明前的巧克力 [FWT]

    UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...

  8. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  9. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

随机推荐

  1. [Postman]授权(11)

    授权过程将验证您是否有权从服务器访问所需的数据.发送请求时,通常必须包含参数以确保请求具有访问权限并返回所需数据.Postman提供的授权类型使您可以轻松处理Postman本机应用程序中的身份验证协议 ...

  2. 应用监控CAT之cat-client源码阅读(一)

    CAT 由大众点评开发的,基于 Java 的实时应用监控平台,包括实时应用监控,业务监控.对于及时发现线上问题非常有用.(不知道大家有没有在用) 应用自然是最初级的,用完之后,还想了解下其背后的原理, ...

  3. C 语言restrict 关键字的概念及使用例子

    restrict是c99标准引入的,它只可以用于限定和约束指针,并表明指针是访问一个数据对象的唯一且初始的方式.即它告诉编译器,所有修改该指针所指向内存中内容的操作都必须通过该指针来修改,而不能通过其 ...

  4. Spring Boot 最核心的 3 个注解详解

    最近面试一些 Java 开发者,他们其中有些在公司实际用过 Spring Boot, 有些是自己兴趣爱好在业余自己学习过.然而,当我问他们 Spring Boot 最核心的 3 个注解是什么,令我失望 ...

  5. python之找最后一个人

    题目大概是:有10个人围成一圈,从第一个人数,数到3的人出局,问最后一个人是谁? 围成一圈,那就是无限循环,直至最后一个人,我们可以把10个人看做一个列表,每循环一次就把除3为0的数去除,下次再次循环 ...

  6. redis 系列3 数据结构之简单动态字符串 SDS

    一.  SDS概述 Redis 没有直接使用C语言传统的字符串表示,而是自己构建了一种名为简单动态字符串(simple dynamic string, SDS)的抽象类型,并将SDS用作Redis的默 ...

  7. sql server 索引阐述系列七 索引填充因子与碎片

    一.概述 索引填充因子作用:提供填充因子选项是为了优化索引数据存储和性能. 当创建或重新生成索引时,填充因子的值可确定每个叶级页上要填充数据的空间百分比,以便在每一页上保留一些剩余存储空间作为以后扩展 ...

  8. mysql 开发基础系列2 整型数据类型

    Mysql 的数据类型 1. 对整数类型, Mysql 还支持类型名称后面的小括号内指定的显示宽度,例如int(5) 表示宽度小于5位时填满宽度,如果不显示指定宽度默认是int(11),一般配合zer ...

  9. 拿到BAT等大厂offer以后,我发现了关于秋招的一些真相

    关于秋招的一些真相 ​ 微信公众号[程序员江湖] 作者陆小凤,985 软件硕士,阿里 Java 研发工程师,在技术校园招聘.自学编程.计算机考研等方面有丰富经验和独到见解,目前致力于分享程序员干货和学 ...

  10. salesforce lightning零基础学习(十一) Aura框架下APP构造实现

    前面的一些lightning文章讲述了aura的基础知识,aura封装的常用js以及aura下的事件处理.本篇通过官方的一个superbadge来实现一个single APP的实现. superbad ...