统计关系可视化

最常用的关系可视化的函数是relplot

seaborn.relplot(x=Noney=Nonehue=Nonesize=Nonestyle=Nonedata=Nonerow=Nonecol=Nonecol_wrap=Nonerow_order=Nonecol_order=Nonepalette=Nonehue_order=Nonehue_norm=Nonesizes=Nonesize_order=Nonesize_norm=Nonemarkers=Nonedashes=Nonestyle_order=Nonelegend='brief'kind='scatter'height=5aspect=1facet_kws=None**kwargs)

Figure-level interface for drawing relational plots onto a FacetGrid.

详细的api解释在此

replot通过参数颜色/色调(hue),大小(size)和形状/风格(style)可以额外表达三个变量的信息.

  1. 散点图scatter plot
  2. 线图line plot

当数据类型都是numberic的时候,最常用的是scatterplot().

relplot的默认kind是‘scatter’,代表scatterplot。

import seaborn as sns
sns.set()
tips = sns.load_dataset("tips")

我们加载tips这个数据集.这是一个描述了客户用餐及小费的数据集.

下面简要的看一下这个数据集前几行.

tips = sns.load_dataset("tips")
sns.relplot(x="total_bill", y="tip", data=tips);

这时候可以看到我们绘制出了total_bill,tip两种数据的散点图.

现在我们想再在图上添加这个就餐的顾客抽不抽烟.我们可以

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

为了进一步增加辨识度,可以进一步改进如下:

sns.relplot(x="total_bill", y="tip",hue="smoker",style="smoker",data=tips);

此时,颜色和形状表达的都是是否为smoker这一信息.

你也可以用hue和style分别表示不同的信息.

sns.relplot(x="total_bill", y="tip", hue="smoker", style="time", data=tips);

此时,既有蓝色的圆(顾客抽烟,吃的午饭),也有黄色的圆(顾客不抽烟,吃的午饭).蓝色的×(顾客抽烟,吃的晚饭),黄色的×(顾客不抽烟,吃的晚饭).

上面的图hue=‘smoker’.smoker是一个分类变量(categorical),当hue=‘size’时,size是一个numeric变量.着色方案会更改.

sns.relplot(x="total_bill", y="tip", hue="size", data=tips);

你可以定制化自己的着色方案.

sns.relplot(x="total_bill", y="tip", hue="size", palette="ch:r=-.5,l=.75", data=tips);

size参数可以改变大小.

下面讲线图

有的数据集,你可能想探索一下连续变量的变化情况.这时候线图就派上用场了.

你可以用lineplot()或者relplot(kind='line')

df = pd.DataFrame(dict(time=np.arange(500),
value=np.random.randn(500).cumsum()))

看一下这个数据集,time是递增的time,value是浮点数.

对于x变量的相同值,更复杂的数据集将具有多个测量值。seaborn中的默认行为是通过绘制均值和围绕均值的95%置信区间来聚合每个x值上的多个测量值:

fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint", y="signal", kind="line", data=fmri);

可以通过ci参数控制是否绘制这个区间,因为大数据集下区间的绘制比较耗时.

sns.relplot(x="timepoint", y="signal", kind="line", ci="sd", data=fmri);
sns.relplot(x="timepoint", y="signal", kind="line", ci=None, data=fmri);

类似于点图,也可以利用颜色,形状之类的参数来表达变量信息.

sns.relplot(x="timepoint", y="signal", hue="region", style="event",
dashes=True, markers=True, kind="line", data=fmri);

用facets表达多变量之间的关系

relplot()是基于FacetGrid的,所以很容易做到这一点.那么,你可以在多个轴上绘制数据集.

比如对tips数据集,time的值有Lunch和Dinner。之前我们是用hue/style来表示这个信息的.现在我们可以这么做:

sns.relplot(x="total_bill", y="tip", hue="smoker",
col="time", data=tips);

从更多的facet绘制数据:

sns.relplot(x="timepoint", y="signal", hue="subject",
col="region", row="event", height=3,
kind="line", estimator=None, data=fmri);

sns.relplot(x="timepoint", y="signal", hue="event", style="event",
col="subject", col_wrap=5,
height=3, aspect=.75, linewidth=2.5,
kind="line", data=fmri.query("region == 'frontal'"));

col_wrap表示一行展示几个图.

												

数据可视化 seaborn绘图(2)的更多相关文章

  1. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  2. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  3. Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)

    1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...

  4. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  5. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

  6. Python图表数据可视化Seaborn:4. 结构化图表可视化

    1.基本设置 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ...

  7. Python数据可视化-seaborn

    详细介绍可以看seaborn官方API和example galler. 1  set_style( )  set( ) set_style( )是用来设置主题的,Seaborn有五个预设好的主题: d ...

  8. 《Python数据分析》笔记——数据可视化

    数据可视化 matplotlib绘图入门 为了使用matplotlib来绘制基本图像,需要调用matplotlib.pyplot子库中的plot()函数 import matplotlib.pyplo ...

  9. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

随机推荐

  1. CCNA(001):Packet Tracer简单使用

    这几天看一些网络书籍,正好看到CCNA,顺便查了一下. CCNA是什么呢?通俗的说,就是专门研究思科设备的知识,再通俗点说就是研究路由器和交换机,其中也包括配置和设备互连,基本就这几个东西,仅限于当前 ...

  2. JS prototype chaining(原型链)整理中······

    初学原型链整理 构造器(constructor).原型(prototype).实例(instance); 每一个构造器都有一个prototype对象,这个prototype对象有一个指针指向该构造器: ...

  3. POJ1964-City Game

    给你N×M大的矩阵,里面分别有字符‘F'和’R',要找到一个最大的只有‘F'的矩阵,不能包含有’R‘.N,M<=1000. 一开始的思路是单调栈来求最大矩形面积,因为没看清题目不能包含’R'字符 ...

  4. navibar记录

    @import (reference) "kmc-common.less"; .kmc{ font-family: PingFangSC-Reguxlar; font-weight ...

  5. 在Docker容器中搭建MXNet/Gluon开发环境

    在这篇文章中没有直接使用MXNet官方提供的docker image,而是从一个干净的nvidia/cuda镜像开始,一步一步部署mxnet需要的相关软件环境,这样做是为了更加细致的了解mxnet的运 ...

  6. JavaScript中+操作符的特殊性

    在JavaScript中+操作符有两个作用: (1)加法运算 (2)字符串连接 在使用+操作符进行运算时,当+操作符两边都是数值类型的时候,进行加法运算; 当+操作符两边有任意一边是字符串,则进行字符 ...

  7. 第三节:带你详解Java的操作符,控制流程以及数组

    前言 大家好,给大家带来带你详解Java的操作符,控制流程以及数组的概述,希望你们喜欢 操作符 算数操作符 一般的 +,-,*,/,还有两个自增 自减 ,以及一个取模 % 操作符. 这里的操作算法,一 ...

  8. apollo入门(一)

    1. apollo入门(一) 1.1. 核心概念 1.1.1. 应用 注意:每个应用需要配置一个appid 1.1.2. 环境 dev 开发环境 fat 功能测试环境 uat 用户接受测试环境 pro ...

  9. Tools - 电子书

    搜索电子书 电子书搜索:https://www.jiumodiary.com/ InfoQ-迷你书 InfoQ-迷你书:http://www.infoq.com/cn/minibooks/ 免费电子书 ...

  10. new 操作符 做了什么

    new 操作符 做了什么 new 运算符创建一个用户定义的对象类型的实例或具有构造函数的内置对象的实例. 假设Test是一个构造函数,通常在创建对象的实例时,要使用new,eg:test = new ...