pytorch学习-WHAT IS PYTORCH
参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py
WHAT IS PYTORCH
这是一个基于python的实现两种功能的科学计算包:
- 用于替换NumPy去使用GPUs的算力
- 一个提供了最大化灵活度和速度的深度学习搜索平台
Getting Started
Tensors
Tensors与NumPy的ndarrays相似,不同在于Tensors能够使用在GPU上去加速计算能力
from __future__ import print_function
import torch
构造一个5*3的矩阵,不初始化
x = torch.empty(, )
print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[ 0.0000e+00, -2.5244e-29, 0.0000e+00],
[-2.5244e-29, 1.9618e-44, 9.2196e-41],
[ 0.0000e+00, 7.7050e+31, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 8.6499e-38]])
随机构造一个初始化矩阵:
x = torch.rand(, )
print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[0.4803, 0.5157, 0.9041],
[0.1619, 0.8994, 0.4302],
[0.6824, 0.6559, 0.9317],
[0.5558, 0.8311, 0.2492],
[0.8287, 0.1050, 0.7201]])
构建一个全为0的矩阵,并且设置类型为long:
x = torch.zeros(, , dtype=torch.long)
print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[, , ],
[, , ],
[, , ],
[, , ],
[, , ]])
直接使用数据来构造一个tensor:
x = torch.tensor([5.5, ])
print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([5.5000, 3.0000])
或者基于存在的tensor去创建一个tensor。这些方法将重新使用输入tensor的特性,如dtype,除非用户提供新的值。默认的dtype为torch.float
#-*- coding: utf- -*-
from __future__ import print_function
import torch
x = torch.tensor([5.5, ])
print(x) x = x.new_ones(, , dtype=torch.double) # new_* methods take in sizes,就是新建一个矩阵,其与x无关
print(x) #设置dtype为torch.float64 x = torch.randn_like(x, dtype=torch.float) # override dtype!
print(x) # 会得到与x有相同大小的矩阵,dtype又从torch.float64变为torch.float
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([5.5000, 3.0000])
tensor([[., ., .],
[., ., .],
[., ., .],
[., ., .],
[., ., .]], dtype=torch.float64)
tensor([[-3.0480e-01, 1.5148e+00, -1.1507e+00],
[ 5.9181e-04, -8.0706e-01, 3.3035e-01],
[ 1.5499e+00, -6.1708e-01, 5.8211e-01],
[-9.1276e-02, -9.4747e-01, -1.8206e-01],
[-8.9208e-02, -1.5132e-01, 1.2374e+00]])
得到矩阵的大小:
print(x.size())
返回:
torch.Size([, ])
⚠️torch.Size实际上是一个元祖,它支持所有的元祖操作
Operations
这里有着多种操作的语法。如下面的例子,我们将看见的是加法操作:
#-*- coding: utf- -*-
from __future__ import print_function
import torch
x = torch.tensor([5.5, ])
print(x) x = x.new_ones(, ) # new_* methods take in sizes,就是新建一个矩阵,其与x无关
print(x) y = torch.rand(, )
print(y)
print(x + y)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([5.5000, 3.0000])
tensor([[., ., .],
[., ., .],
[., ., .],
[., ., .],
[., ., .]])
tensor([[2.5123e-04, 9.8943e-01, 5.3585e-01],
[9.4955e-01, 1.3734e-01, 4.0120e-01],
[3.6199e-01, 1.5062e-01, 2.7033e-01],
[9.5025e-01, 6.3539e-01, 2.3759e-01],
[6.7833e-01, 4.3510e-01, 2.3747e-01]])
tensor([[1.0003, 1.9894, 1.5359],
[1.9496, 1.1373, 1.4012],
[1.3620, 1.1506, 1.2703],
[1.9502, 1.6354, 1.2376],
[1.6783, 1.4351, 1.2375]])
等价于:
print(torch.add(x,y))
还可以设置一个输出变量,然后使用变量输出:
torch.add(x, y, out=result)
print(result)
还有内置加法函数:
y.add_(x)
print(y)
⚠️任何改变张量的内置操作都使用了_后缀。如x.copy_(y),x.t_()都会改变x的值
你也可以使用标准的类似于numpy的索引:
print(x[:, ])
调整:如果你想要调整/重塑tensor,你可以使用torch.view:
#-*- coding: utf- -*-
from __future__ import print_function
import torch
x = torch.randn(, )
print(x)
y = x.view()
print(y)
z = x.view(-, ) # -1表示从其他维度推断,即后面设为8,那么前面就推断是2
print(z)
print(x.size(), y.size(), z.size())
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[ 1.4353, -0.7081, 1.1953, -0.1438],
[-0.9198, -0.8695, -0.3122, -0.0882],
[ 0.5113, -1.3449, -0.9429, 1.7962],
[ 0.5734, 1.0710, -0.9295, -2.0507]])
tensor([ 1.4353, -0.7081, 1.1953, -0.1438, -0.9198, -0.8695, -0.3122, -0.0882,
0.5113, -1.3449, -0.9429, 1.7962, 0.5734, 1.0710, -0.9295, -2.0507])
tensor([[ 1.4353, -0.7081, 1.1953, -0.1438, -0.9198, -0.8695, -0.3122, -0.0882],
[ 0.5113, -1.3449, -0.9429, 1.7962, 0.5734, 1.0710, -0.9295, -2.0507]])
torch.Size([, ]) torch.Size([]) torch.Size([, ])
如果你有只有一个元素的tensor,那么就能够使用.item()去得到一个转换为python数字的值:
#-*- coding: utf- -*-
from __future__ import print_function
import torch
x = torch.randn()
print(x)
print(x.item())
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([-2.3159])
-2.3158915042877197
⚠️100+的张量运算,包括转置、标引、切片、数学运算、线性代数、随机数等,都计算在here
NumPy Bridge
将Torch Tensor转换为NumPy数组,反之亦然,是一件轻而易举的事。
Torch张量和NumPy数组将共享它们的底层内存位置,更改一个将更改另一个。
Converting a Torch Tensor to a NumPy Array
#-*- coding: utf- -*-
from __future__ import print_function
import torch
a = torch.ones()
print(a) b = a.numpy()
print(b) a.add_()
print(a)
print(b)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([., ., ., ., .])
[. . . . .]
tensor([., ., ., ., .])
[. . . . .]
从上面的结果可以看见,仅更改tensor a也会导致b被更改
Converting NumPy Array to Torch Tensor
查看如何改变np数组来自动改变torch张量
#-*- coding: utf- -*-
from __future__ import print_function
import torch
import numpy as np
a = np.ones()
b = torch.from_numpy(a)
np.add(a, , out=a)
print(a)
print(b)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
[. . . . .]
tensor([., ., ., ., .], dtype=torch.float64)
CPU上除了Char Tensor以外的所有张量都支持转换成NumPy,或者反向转换
CUDA Tensors
Tensors可以被移到任意的设备,使用.to方法
#-*- coding: utf- -*-
from __future__ import print_function
import torch # let us run this cell only if CUDA is available
# We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA device object
x = torch.randn(, )
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings ``.to("cuda")``
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!
之前使用的机器中没有CUDA,换到另一台运行:
user@home:/opt/user$ python test.py
tensor([[0.6344, 1.7958, 2.3387, 2.0527],
[2.1517, 2.1555, 2.1645, 0.4499],
[2.2020, 1.7363, 3.1394, 0.1240],
[1.9541, 1.6115, 2.0081, 1.8911]], device='cuda:0')
tensor([[0.6344, 1.7958, 2.3387, 2.0527],
[2.1517, 2.1555, 2.1645, 0.4499],
[2.2020, 1.7363, 3.1394, 0.1240],
[1.9541, 1.6115, 2.0081, 1.8911]], dtype=torch.float64)
pytorch学习-WHAT IS PYTORCH的更多相关文章
- 【pytorch】pytorch学习笔记(一)
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...
- 【深度学习】Pytorch学习基础
目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MN ...
- Pytorch学习之源码理解:pytorch/examples/mnists
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...
- Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...
- Pytorch学习--编程实战:猫和狗二分类
Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5 ...
- 新手必备 | 史上最全的PyTorch学习资源汇总
目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源 - NLP&PyTorch实战 - CV&PyTorch实战 PyTorch论 ...
- [深度学习] Pytorch学习(一)—— torch tensor
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...
- [PyTorch 学习笔记] 1.1 PyTorch 简介与安装
PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深 ...
- 计算机视觉2-> 深度学习 | anaconda+cuda+pytorch环境配置
00 想说的 深度学习的环境我配置了两个阶段,暑假的时候在一个主攻视觉的实验室干活,闲暇时候就顺手想给自己的Ubuntu1804配置一个深度学习的环境.这会儿配到了anaconda+pytorch+c ...
随机推荐
- CSS单位【记录】
1.长度 2.角度 3.时间 4.分辨率 5.颜色 6.函数 7.生成内容 8.图像 9.数字 1.长度 <length>:数字和单位之间没有空格,0之后的长度单位是可选的 相对长度单位 ...
- eclipse安装中java环境的搭建
转自博客园:amandaj 做了小小改动. 一.java 开发环境的搭建 这里主要说的是在windows 环境下怎么配置环境. 1.首先安装JDK java的sdk简称JDK ,去其官方网站下载最近 ...
- JavaWeb 过滤器——验证登录 防止未登录进入界面
昨天刚刚完成老师布置的一个Web小项目,项目中用到了两个过滤器(编码过滤.登录过滤) 比如电商网页中有些不需要登录也能访问(首页.商品详细信息...),其他都需要过滤在会话作用域(session)中是 ...
- Linux CFS调度器之负荷权重load_weight--Linux进程的管理与调度(二十五)
1. 负荷权重 1.1 负荷权重结构struct load_weight 负荷权重用struct load_weight数据结构来表示, 保存着进程权重值weight.其定义在/include/lin ...
- UGUI自定义组件之Image根据Text大小自动调整
需求分析 在之前的文章中,介绍到可以使用UGUI自带的ContentSizeFitter组件,进行Button根据Text的长度自适应, UGUI ContentSizeFitter之Button根据 ...
- 什么是JDK?什么是JRE?JDK与JRE的区别和用途
一.编程环境与运行环境 JDK(Java Development Kit)称为Java开发包或Java开发工具.是一个编写Java的Applet小程序和应用程序的程序开发环境.JDK是整个Java的核 ...
- Windows SDK 8安装失败的绕坑办法
安装win sdk 8,提示错误:管道正在被关闭. 查看安装log文件,有如下错误: Error 0x800700e8: Failed to write message type to pipe.Er ...
- 回调函数的原理及PHP实例
背景:在最近的一个开发项目中,用户要先调用服务才能开始进行一系列的查询活动,想了好久,经同事提醒, 用回调函数即可解决该问题.在这里,对PHP下回调函数的原理及实现分别做一下讲解. 1 什么是回调 软 ...
- 学习flying logic
之前在知乎上结识的朋友吴笛,他的qq空间里分享了 flying logic的一些用途,我想到可以规划和团队的目标,这点让我感到很兴奋,分享学习这个软件. 学习之前,我应当把软件中的单词学明白.现在就 ...
- May 28. 2018 Week 22nd Monday
Do one thing at a time, and do well. 一次只做一件事,并且要做到最好. Why is it that about 25% to 50% of people have ...