Luogu P3379 【模板】最近公共祖先(LCA)
预处理出从$x$节点向上跳2i个节点的序号$p[x][i]$及节点深度$dpth[x]$,
寻找$lca$时,从$Max$(可能的最大深度)到0枚举$i$,
首先把较深的一个节点向上跳至深度相同,
然后两个点同步动作,若$p[x][i]≠p[y][i]$则跳。
最终返回他们的父亲$p[x][0]$即为$lca$。
注意双向边要开2倍
#include<cstdio>
#include<iostream>
#include<cmath>
#define MogeKo qwq using namespace std;
const int maxn = *;
int head[maxn],to[maxn],nxt[maxn],dpth[maxn];
int n,m,s,u,v,cnt,p[maxn][]; void add(int x,int y) {
to[++cnt] = y;
nxt[cnt] = head[x];
head[x] = cnt;
} void dfs(int x,int fa) {
dpth[x] = dpth[fa]+;
p[x][] = fa;
for(int i = ; ( << i)<=dpth[x]; i++)
p[x][i] = p[p[x][i-]][i-];
for(int i = head[x]; i; i = nxt[i]) {
if(to[i] == fa)continue;
dfs(to[i],x);
}
} int lca(int a,int b) {
if(dpth[a] < dpth[b])
swap(a,b);
for(int i = log2(dpth[a]); i >= ; i--)
if(dpth[a]-(<<i) >= dpth[b])
a = p[a][i];
if(a == b)return a;
for(int i = log2(dpth[a]);i >= ;i--)
if(p[a][i] != p[b][i]){
a = p[a][i];
b = p[b][i];
}
return p[a][];
} int main() {
scanf("%d%d%d",&n,&m,&s);
for(int i = ;i <= n-;i++){
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(s,-);
for(int i = ;i <= m;i++){
scanf("%d%d",&u,&v);
int t = lca(u,v);
printf("%d\n",t);
}
return ;
}
Luogu P3379 【模板】最近公共祖先(LCA)的更多相关文章
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先lca模板
void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...
随机推荐
- @Tranactional 注解分析
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义 @Tranactional注解分析 作用 ...
- Android string.xml 添加特殊字符
解决项目中在string.xml 中显示特殊符号的问题,如@号冒号等.只能考虑使用ASCII码进行显示: @号 @ :号 : 空格 以下为常见的ASCII十进制交换编码: --> <- ...
- python--线程同步原语
Threading模块是python3里面的多线程模块,模块内集成了许多的类,其中包括Thread,Condition,Event,Lock,Rlock,Semaphore,Timer等等.下面这篇文 ...
- ORA-12514, TNS:listener does not currently know of service requested in connect descriptor案例2
今天使用SQL Developer连接一台测试服务器数据库(ORACLE 11g)时,遇到了"ORA-12514, TNS:listener does not currently know ...
- 洗礼灵魂,修炼python(68)--爬虫篇—番外篇之webbrowser模块
题外话: 爬虫学到这里,我想你大部分的网站已经不再话下了对吧?有检测报文头的,我们可以伪造报文头为浏览器,有检测IP,我们可以用代理IP,有检测请求速度的,我们可以用time模块停顿一下,需要登录验证 ...
- SQL Server 缓存清除与内存释放
Sql Server系统内存管理在没有配置内存最大值,很多时候我们会发现运行SqlServer的系统内存往往居高不下.这是由于他对于内存使用的策略是有多少闲置的内存就占用多少,直到内存使用虑达到系统峰 ...
- Linux的notifier机制的应用
在linux内核系统中,各个模块.子系统之间是相互独立的.Linux内核可以通过通知链机制来获取由其它模块或子系统产生的它感兴趣的某些事件. notifier_block结构体在include/lin ...
- python3中list列表的一些操作
最近遇到许多List的操作,感觉它是一种很重要的一种基础数据结构,本人掌握的也不是很扎实,这里找了一些列表的操作,常用函数,记录下来,希望对大家有用.如果理解有偏差,欢迎指正,感谢! (1)列表的合并 ...
- python集合与字典的用法
python集合与字典的用法 集合: 1.增加 add 2.删除 •del 删除集合 •discard(常用)删除集合中的元素 #删除一个不存在的元素不会报错 •remove 删除一个不存在的 ...
- This network connection does not exist
This network connection does not exist 在windows server 2008上面map了一个磁盘,共享的folder被我停止共享后,点击该磁盘的disconn ...