Kafka 的简介:

  Kafka 是一款分布式消息发布和订阅系统,具有高性能、高吞吐量的特点而被广泛应用与大数据传输场景。它是由 LinkedIn 公司开发,使用 Scala 语言编写,之后成为 Apache 基金会的一个顶级项目。kafka 提供了类似 JMS 的特性,但是在设计和实现上是完全不同的,而且他也不是 JMS 规范的实现。

kafka 产生的背景:

  kafka 作为一个消息系统,早起设计的目的是用作 LinkedIn 的活动流(Activity Stream)和运营数据处理管道(Pipeline)。活动流数据是所有的网站对用户的使用情况做分析的时候要用到的最常规的部分,活动数据包括页面的访问量(PV)、被查看内容方面的信息以及搜索内容。这种数据通常的处理方式是先把各种活动以日志的形式写入某种文件,然后周期性的对这些文件进行统计分析。运营数据指的是服务器的性能数据(CPU、IO 使用率、请求时间、服务日志等)。

Kafka 的应用场:

  由于 kafka 具有更好的吞吐量、内置分区、冗余及容错性的优点(kafka 每秒可以处理几十万消息),让 kafka 成为了一个很好的大规模消息处理应用的解决方案。所以在企业级应用长,主要会应用于如下几个方面

Ø 行为跟踪:kafka 可以用于跟踪用户浏览页面、搜索及其他行为。通过发布-订阅模式实时记录到对应的 topic 中,通过后端大数据平台接入处理分析,并做更进一步的实时处理和监控

Ø 日志收集:日志收集方面,有很多比较优秀的产品,比如 Apache Flume,很多公司使用kafka 代理日志聚合。日志聚合表示从服务器上收集日志文件,然后放到一个集中的平台(文件服务器)进行处理。在实际应用开发中,我们应用程序的 log 都会输出到本地的磁盘上,排查问题的话通过 linux 命令来搞定,如果应用程序组成了负载均衡集群,并且集群的机器有几十台以上,那么想通过日志快速定位到问题,就是很麻烦的事情了。所以一般都会做一个日志统一收集平台管理 log 日志用来快速查询重要应用的问题。所以很多公司的套路都是把应用日志几种到 kafka 上,然后分别导入到 es 和 hdfs 上,用来做实时检索分析和离线统计数据备份等。而另一方面,kafka 本身又提供了很好的 api 来集成日志并且做日志收集。

Kafka 本身的架构:

  一个典型的 kafka 集群包含若干 Producer(可以是应用节点产生的消息,也可以是通过Flume 收集日志产生的事件),若干个 Broker(kafka 支持水平扩展)、若干个 Consumer Group,以及一个 zookeeper 集群。kafka 通过 zookeeper 管理集群配置及服务协同。Producer 使用 push 模式将消息发布到 broker,consumer 通过监听使用 pull 模式从broker 订阅并消费消息。多个 broker 协同工作,producer 和 consumer 部署在各个业务逻辑中。三者通过zookeeper 管理协调请求和转发。这样就组成了一个高性能的分布式消息发布和订阅系统。图上有一个细节是和其他 mq 中间件不同的点,producer 发送消息到 broker的过程是 push,而 consumer 从 broker 消费消息的过程是 pull,主动去拉数据。而不是 broker 把数据主动发送给 consumer。

kafka 的安装部署:

  1.下载安装包 :http://kafka.apache.org/downloads

   解压 :  tar -zxvf kafka_2.11-1.1.0.tgz 这样子就安装好了。

  2.启动/停止 kafka:

   1. 需要先启动 zookeeper,如果没有搭建 zookeeper 环境,可以直接运行kafka 内嵌的 zookeeper

    启动命令: bin/zookeeper-server-start.sh config/zookeeper.properties

    如果连接外部zookeeper 需要修改 config/server.properties 配置文件来配置我们的zookeeper。修改如下信息。zk集群环境用逗号隔开。

zookeeper.connect=192.168.254.135:2181

    这个时候可以通过 sh kafka-server-start.sh -daemon ../config/server.properties 命令来启动服务后台运行。

    注意修改  listeners=PLAINTEXT://192.168.1.101:9092 。外部代理地址 advertised.listeners=PLAINTEXT://192.168.1.101:9092

  3.创建 一个名为 test 的 topic(在bin目录下) :Replication-factor 表示该 topic 需要在不同的 broker 中保存几份,这里设置成 1,表示在两个 broker 中保存两份。Partitions 分区

sh kafka-topics.sh --create --zookeeper 192.168.254.135:2181 --replication-factor 1 --partitions 1 --topic test

  查看 topic 列表:

sh kafka-topics.sh --list --zookeeper 192.168.254.135:2181

  4.发送消息:发送两条消息

 sh kafka-console-producer.sh  --broker-list localhost:9092 --topic testTopic
> This is a message
> This is another message

  5.启动消费者:

sh kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic testTopic --from-beginning

删除topic:执行完以后删除对应logs及zookeeper上的节点。

./kafka-topics.sh  --delete --zookeeper 192.168.254.135: --topic firstTopic

安装集群环境:

  在 3台机器上都配置上  zookeeper.connect=192.168.254.135:2181 信息。zk要是也做了集群用逗号分开

  修改 server.properties 文件中 broker.id=0 ,在集群中这个 id 要求是唯一的,我们分别改成 1 2 3.

  放开 listeners=PLAINTEXT://:9092 配置,修改为listeners=PLAINTEXT://本机IP:9092,然后先后启动就可以,注意这里先启动的,也就是先到zk上面去注册的就是 leader。

Kafka JAVA API 的使用:

  消息生产者:

public class ProducerDemo extends Thread{

    private final KafkaProducer<Integer,String> producer;

    private final String topic;

    public ProducerDemo(String topic){
Properties properties=new Properties();
// 连接的 kafka 集群地址
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"192.168.254.135:9092,192.168.254.136:9092,192.168.254.137:9092");
// 客户端ID标识
properties.put(ProducerConfig.CLIENT_ID_CONFIG,"KafkaProducerDemo");
//确认记录,保证记录不丢失 总是设置成-1
properties.put(ProducerConfig.ACKS_CONFIG,"-1");
// 键序列化
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.IntegerSerializer");
//值序列化
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer");
producer=new KafkaProducer<Integer, String>(properties);
this.topic=topic;
} @Override
public void run() {
int num=0;
while(num<50){
String message="message_"+num;
System.out.println("begin send message:"+message);
producer.send(new ProducerRecord<Integer, String>(topic, message));
num++;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} public static void main(String[] args) {
new ProducerDemo("testTopic").start();
}
}

发送端的常用可选配置信息:

ACKS_CONFIG:

  acks 配置表示 producer 发送消息到 broker 上以后的确认值。有三个可选项

Ø 0:表示 producer 不需要等待 broker 的消息确认。这个选项时延最小但同时风险最大(因为当 server 宕机时,数据将会丢失)。

Ø 1:表示 producer 只需要获得 kafka 集群中的 leader 节点确认即可,这个选择时延较小同时确保了 leader 节点确认接收成功。

Ø all(-1):需要 ISR 中所有的 Replica 给予接收确认,速度最慢,安全性最高,但是由于 ISR 可能会缩小到仅包含一个 Replica,所以设置参数为 all 并不能一定避免数据丢失,

BATCH_SIZE_CONFIG :

  生产者发送多个消息到 broker 上的同一个分区时,为了减少网络请求带来的性能开销,通过批量的方式来提交消息,可以通过这个参数来控制批量提交的字节数大小,默认大小是 16384byte,也就是 16kb,意味着当一批消息大小达到指定的 batch.size 的时候会统一发送

LINGER_MS_CONFIG

  Producer 默认会把两次发送时间间隔内收集到的所有 Requests 进行一次聚合然后再发送,以此提高吞吐量,而 linger.ms 就是为每次发送到 broker 的请求增加一些 delay,以此来聚合更多的 Message 请求。 这个有点想 TCP 里面的Nagle 算法,在 TCP 协议的传输中,为了减少大量小数据包的发送,采用了Nagle 算法,也就是基于小包的等-停协议。

Ø BATCH_SIZE_CONFIG 和 LINGER_MS_CONFIG这两个参数是 kafka 性能优化的关键参数,如果两个都配置了,那么怎么工作的呢?实际上,当二者都配置的时候,只要满足其中一个要求,就会发送请求到 broker 上

MAX_REQUEST_SIZE_CONFIG

  设置请求的数据的最大字节数,为了防止发生较大的数据包影响到吞吐量,默认值为 1MB。

消息发送的可靠性:

// 方法 1: 使用 callback
producer.send(new ProducerRecord<String, String>("topic0", "message 2"), new Callback() { public void onCompletion(RecordMetadata metadata, Exception exception) {
if(exception != null) {
System.out.println("send message2 failed with " + exception.getMessage());
} else {
// offset 是消息在 partition 中的编号,可以根据 offset 检索消息
System.out.println("message2 sent to " + metadata.topic() + ", partition " + metadata.partition() + ", offset " + metadata.offset());
} } });
String msg="kafka practice msg:"+num;
//get 会拿到发送的结果
//同步 get() -> Future()
//回调通知 Future<RecordMetadata> futrue = producer.send(new ProducerRecord<>(topic, msg), (metadata, exception) -> { System.out.println(metadata.offset() + "->" + metadata.partition() + "->" + metadata.topic());
});
futrue.get();

消息消费者:

public class ConsumerDemo extends Thread{

    private final KafkaConsumer kafkaConsumer;

    public ConsumerDemo(String topic) {
Properties properties=new Properties();
// 连接的 kafka 集群地址
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
"192.168.254.135:9092,192.168.254.136:9092,192.168.254.137:9092");
// 消费者分组
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"KafkaConsumerDemo1");
//确认自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"true");
// 自动提交间隔
properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,"1000");
// 序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.IntegerDeserializer");
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
//对于不同的groupid保证能消费到之前的消息,充值offset
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
kafkaConsumer=new KafkaConsumer(properties);
//订阅
kafkaConsumer.subscribe(Collections.singletonList(topic));
} @Override
public void run() {
while(true){
ConsumerRecords<Integer,String> consumerRecord=kafkaConsumer.poll(1000);
for(ConsumerRecord record:consumerRecord){
System.out.println("message receive:"+record.value());
}
}
} public static void main(String[] args) {
new ConsumerDemo("testTopic").start();
}
}

消费端的常用可选配置:

GROUP_ID_CONFIG:

  consumer group 是 kafka 提供的可扩展且具有容错性的消费者机制。既然是一个组,那么组内必然可以有多个消费者或消费者实例(consumer instance),它们共享一个公共的 ID,即 group ID。组内的所有消费者协调在一起来消费订阅主题(subscribed topics)的所有分区(partition)。当然,每个分区只能由同一个消费组内的一个 consumer 来消费.如下图所示,分别有三个消费者,属于两个不同的 group,那么对于 firstTopic 这个 topic 来说,这两个组的消费者都能同时消费这个 topic 中的消息,对于此事的架构来说,这个 firstTopic 就类似于 ActiveMQ 中的 topic 概念。如下图所示,如果 3 个消费者都属于同一个group,那么此事 firstTopic 就是一个 Queue 的概念

ENABLE_AUTO_COMMIT_CONFIG:

  消费者消费消息以后自动提交,只有当消息提交以后,该消息才不会被再次接收到,还可以配合 auto.commit.interval.ms 控制自动提交的频率。当然,我们也可以通过 consumer.commitSync()的方式实现手动提交

AUTO_OFFSET_RESET_CONFIG:

  这个参数是针对新的 groupid 中的消费者而言的,当有新 groupid 的消费者来消费指定的 topic 时,对于该参数的配置,会有不同的语义auto.offset.reset=latest 情况下,新的消费者将会从其他消费者最后消费的offset 处开始消费 Topic 下的消息auto.offset.reset= earliest 情况下,新的消费者会从该 topic 最早的消息开始消费auto.offset.reset=none 情况下,新的消费者加入以后,由于之前不存在offset,则会直接抛出异常。

MAX_POLL_RECORDS_CONFIG:

  此设置限制每次调用 poll 返回的消息数,这样可以更容易的预测每次 poll 间隔要处理的最大值。通过调整此值,可以减少 poll 间隔。

Springboot整合Kafka:

1.pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions><!-- 去掉springboot默认配置 -->
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency> <!-- 引入log4j2依赖 -->
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j2</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.0.</version>
</dependency>
<!--不需要设置依赖包的版本,spring-boot-starter-parent已经帮我们添加了版本的管理。-->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
</dependency>
</dependencies>

2.application.properties:

#============== kafka ===================
# 指定kafka 代理地址,可以多个
#需要在 hosts里面配置 192.168.1.101 wuzz 进行主机名映射
spring.kafka.bootstrap-servers=192.168.1.101:
#=============== provider =======================
server.port=
spring.kafka.producer.retries=
# 每次批量发送消息的数量
spring.kafka.producer.batch-size=
spring.kafka.producer.buffer-memory= # 指定消息key和消息体的编解码方式
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer #=============== consumer =======================
# 指定默认消费者group id
spring.kafka.consumer.group-id==group1
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=true
spring.kafka.consumer.auto-commit-interval= # 指定消息key和消息体的编解码方式
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer

3.消息实体类:

public class Message {
private Long id; //id private String msg; //消息 private Date sendTime; //时间戳
   //省略 get set
}

4.消息接收 KafkaReceiver:

@Component
public class KafkaReceiver {
private static Logger logger = LoggerFactory.getLogger(KafkaReceiver.class); @KafkaListener(topics = {"wuzzTopic"})
public void listen(ConsumerRecord<?, ?> record) {
Optional<?> kafkaMessage = Optional.ofNullable(record.value());
if (kafkaMessage.isPresent()) { Object message = kafkaMessage.get();
System.out.println("----------------- record =" + record);
System.out.println("------------------ message =" + message);
} }
}

5.消息发送KafkaSender:

@Component
public class KafkaSender { @Autowired
private KafkaTemplate<String, String> kafkaTemplate; private Gson gson = new GsonBuilder().create(); //发送消息方法
public void send() {
Message message = new Message();
message.setId(System.currentTimeMillis());
message.setMsg(UUID.randomUUID().toString());
message.setSendTime(new Date());
System.out.println("+++++++++++++++++++++ message = {}"+gson.toJson(message));
kafkaTemplate.send("wuzzTopic", gson.toJson(message));
}
}

6.测试类:

@RestController
public class TestController { @Autowired
private KafkaSender kafkaSender; @RequestMapping(value = "/testSend.json", method = {RequestMethod.GET})
public void testSend() { kafkaSender.send();
} }

7.启动测试,访问对应接口。

kafka 的安装部署的更多相关文章

  1. Kafka Manager安装部署及使用

     为了简化开发者和服务工程师维护Kafka集群的工作,yahoo构建了一个叫做Kafka管理器的基于Web工具,叫做 Kafka Manager.本文对其进行部署配置,并安装配置kafkatool对k ...

  2. 【kafka】安装部署kafka集群(kafka版本:kafka_2.12-2.3.0)

    3.2.1 下载kafka并安装kafka_2.12-2.3.0.tgz tar -zxvf kafka_2.12-2.3.0.tgz 3.2.2 配置kafka集群 在config/server.p ...

  3. 4.kafka的安装部署

    为了安装过程对一些参数的理解,我先在这里提一下kafka一些重点概念,topic,broker,producer,consumer,message,partition,依赖于zookeeper, ka ...

  4. Kafka概述及安装部署

    一.Kafka概述 1.Kafka是一个分布式流媒体平台,它有三个关键功能: (1)发布和订阅记录流,类似于消息队列或企业消息传递系统: (2)以容错的持久方式存储记录流: (3)记录发送时处理流. ...

  5. Kafka介绍及安装部署

    本节内容: 消息中间件 消息中间件特点 消息中间件的传递模型 Kafka介绍 安装部署Kafka集群 安装Yahoo kafka manager kafka-manager添加kafka cluste ...

  6. Linux下单机安装部署kafka及代码实现

    技术交流群:233513714 这几天研究了kafka的安装及使用,在网上找了很多教程但是均以失败告终,直到最后想起网络方面的问题最终才安装部署成功,下面就介绍一下kafka的安装部署及代码实现 一. ...

  7. Kafka Eagle安装详情及问题解答

    1.概述 最近有很多同学给笔者留言,说在安装Kafka Eagle的时候,会遇到一些问题,请教如何解决?今天笔者就在这里总结一下安装步骤,和一些安装的注意事项,以及解决方式. 2.内容 在安装Kafk ...

  8. Kafka的安装和部署及测试

    1.简介 大数据分析处理平台包括数据的接入,数据的存储,数据的处理,以及后面的展示或者应用.今天我们连说一下数据的接入,数据的接入目前比较普遍的是采用kafka将前面的数据通过消息的方式,以数据流的形 ...

  9. Kafka集群安装部署、Kafka生产者、Kafka消费者

    Storm上游数据源之Kakfa 目标: 理解Storm消费的数据来源.理解JMS规范.理解Kafka核心组件.掌握Kakfa生产者API.掌握Kafka消费者API.对流式计算的生态环境有深入的了解 ...

随机推荐

  1. eslint 关于CRLF或者LF报错

    在拉取项目代码时,如果有eslint代码校验,但是本地打开会有于CRLF或者LF报错报错,那么怎么处理呢? git有个自动转换换行符功能,在文件commit时会自动转换换行符格式: 不想使用,也可以通 ...

  2. 【mmall】IDEA插件jrebel

    破解方法 http://www.jianshu.com/p/87b11bad3d7f

  3. R大

    知乎链接 https://www.zhihu.com/collection/114506870

  4. Xml的转义字符--约束-xml解析器

    XML解析器:Dom适合增删改查(crud),缺点就是内存消耗大:  Sax:内存消耗非常小,解析速度快,但是不适合增删改:

  5. python,练习乌龟吃鱼

    ''' 1.首先要有一个画布 2.随机乌龟和鱼的位置 3.移动 ''' import random as r list_x = [0,10] list_y = [0,10] class Turtle: ...

  6. MyBatis-Plus的简单使用

    mybatis-plus也只是听过,可是终究没有使用过.于是自己花几天晚上的时间研究mybatis-plus的使用. 下面的研究也是基于其官网:http://mp.baomidou.com/guide ...

  7. LwIP Application Developers Manual1---介绍

    1.前言 本文主要是对LwIP Application Developers Manual的翻译 2.读者(应用开发手册的读者) 谁适合读这份手册 网络应用的开发者 想了解lwIP的网络应用开发者 阅 ...

  8. Python os.removedirs() 和shutil.rmtree() 用于删除文件夹

    概述 os.removedirs() 方法用于递归删除目录.像rmdir(), 如果子文件夹成功删除, removedirs()才尝试它们的父文件夹,直到抛出一个error(它基本上被忽略,因为它一般 ...

  9. Openssl编程--源码分析

    Openssl编程 赵春平 著 Email: forxy@126.com 第一章 基础知识 8 1.1 对称算法 8 1.2 摘要算法 9 1.3 公钥算法 9 1.4 回调函数 11 第二章 ope ...

  10. c++ 值转换

    1.double,float 四舍五入,保留小数位数. void MainWindow::on_pushButton_clicked() { double number=3.141592; ); qD ...