原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html

题目传送门 - BZOJ3262

题目传送门 - 洛谷P3810

题意

  有$n$个元素,第$i$个元素有$a_i$、$b_i$、$c_i$三个属性,设$f(i)$表示满足$a_j\leq a_i$且$b_j\leq b_i$且$c_j\leq c_i$的$j$的数量。对于$d\in [0,n)$,求$f(i)=d$的数量。

  $n\leq 100000,max\{a_i,b_i,c_i|i\in[1,n]\}<=200000$

题解

  三维偏序模版题。

  CDQ分治一波。树套树也可以。

  CDQ分治思路:

    一维偏序:直接排序。

    二维偏序:树状数组。

    三维偏序:第3维套CDQ分治。

  对于第一维和第二维我们还是按照原样处理。

  对于第三维,我们考虑分治。

  首先显然要排序。

  对于一个区间$[L,R]$,首先求得$mid=\left\lfloor\frac{L+R}{2}\right\rfloor$。

  然后考虑先分治$[L,mid]$和$[mid+1,R]$。

  然后通过树状数组的做法,用左区间来更新右区间。注意树状数组的还原。

  总体来说,对于第3维,是在开始的时候保存了rank。对于第2维,是在递归的过程中归并得到了有序排列。对于第1维,由于一开始排序的时候作为了第3关键字,而归并排序具有稳定性,所以,对于第二维相同的,第三维是有序的。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=100005;
struct Node{
int x,y,z,rank,res;
void get(){
scanf("%d%d%d",&x,&y,&z),res=0;
}
}a[N],b[N];
int n,k,tree[N*2],tot[N];
bool cmp(Node a,Node b){
if (a.x!=b.x)
return a.x<b.x;
if (a.y!=b.y)
return a.y<b.y;
return a.z<b.z;
}
bool issame(Node a,Node b){
return a.x==b.x&&a.y==b.y&&a.z==b.z;
}
void sameadd(){
int tot=1,last=n;
for (int i=n-1;i>=1;i--)
if (issame(a[i],a[last]))
a[i].res+=tot++;
else
last=i,tot=1;
}
int lowbit(int x){
return x&-x;
}
void add(int x,int y){
for (;x<=k;x+=lowbit(x))
tree[x]+=y;
}
int sum(int x){
int ans=0;
for (;x>0;x-=lowbit(x))
ans+=tree[x];
return ans;
}
void CDQ(int L,int R){
if (L==R)
return;
int mid=(L+R)>>1,cnt=L;
CDQ(L,mid),CDQ(mid+1,R);
for (int i=L,l=L,r=mid+1;i<=R;i++)
if (r>R||(l<=mid&&a[l].y<=a[r].y))
b[cnt++]=a[l++];
else
b[cnt++]=a[r++];
for (int i=L;i<=R;i++){
a[i]=b[i];
if (a[i].rank<=mid)
add(a[i].z,1);
else
a[i].res+=sum(a[i].z);
}
for (int i=L;i<=R;i++)
if (a[i].rank<=mid)
add(a[i].z,-1);
}
int main(){
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
a[i].get();
sort(a+1,a+n+1,cmp);
sameadd();
for (int i=1;i<=n;i++)
a[i].rank=i;
memset(tree,0,sizeof tree);
CDQ(1,n);
memset(tot,0,sizeof tot);
for (int i=1;i<=n;i++)
tot[a[i].res]++;
for (int i=0;i<n;i++)
printf("%d\n",tot[i]);
return 0;
}

  

BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组的更多相关文章

  1. 洛谷P5069 [Ynoi2015]纵使日薄西山(树状数组,set)

    洛谷题目传送门 一血祭 向dllxl致敬! 算是YNOI中比较清新的吧,毕竟代码只有1.25k. 首先我们对着题意模拟,寻找一些思路. 每次选了一个最大的数后,它和它周围两个数都要减一.这样无论如何, ...

  2. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  3. 洛谷 P4396 (离散化+莫队+树状数组)

    ### 洛谷P4396  题目链接 ### 题目大意: 有 n 个整数组成的数组,m 次询问,每次询问中有四个参数 l ,r,a,b .问你在[l,r] 的区间内的所有数中,值属于[a,b] 的数的个 ...

  4. 【题解】洛谷P1966 [NOIP2013TG] 火柴排队(树状数组+逆序对)

    次元传送门:洛谷P1966 思路 显然在两排中 每排第i小的分别对应就可取得最小值(对此不给予证明懒) 所以我们只在意两排的火柴是第几根 高度只需要用来进行排序(先把两个序列改成有序的方便离散化) 因 ...

  5. D 洛谷 P3602 Koishi Loves Segments [贪心 树状数组+堆]

    题目描述 Koishi喜欢线段. 她的条线段都能表示成数轴上的某个闭区间.Koishi喜欢在把所有线段都放在数轴上,然后数出某些点被多少线段覆盖了. Flandre看她和线段玩得很起开心,就抛给她一个 ...

  6. 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)

    题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...

  7. 洛谷 : P3374 【模板】树状数组 1 P3368 【模板】树状数组 2

    ******************************************************************************** 属于模板题了,一个单点修改区间询问,一 ...

  8. 洛谷P4054 [JSOI2009]计数问题(二维树状数组)

    题意 题目链接 Sol 很傻x的题.. c才100, n, m才300,直接开100个二维树状数组就做完了.. #include<bits/stdc++.h> using namespac ...

  9. 模板【洛谷P3368】 【模板】树状数组 2

    P3368 [模板]树状数组 2 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 树状数组区间加,单点查询. code: #include <i ...

随机推荐

  1. Uncaught RangeError: Maximum call stack size exceeded

    环境: jquery+bootstrap+bootstrapValidator 问题描述:有个form表单,一点击按钮提交,就会报如题错误.正常应该是去校验表单输入. 解决: 从日志分析来看,报错的起 ...

  2. [PHP]常量的一些特性

    1. define()函数如果定义了两个名称一模一样的常量,那么它将不会抛出错误,并且只有第一次的定义是生效的,再次定义并不会覆盖先前的值: define('ABC', 0); define('ABC ...

  3. CDH hive metastore启动报错:Unknown column 'A0.SCHEMA_VERSION_V2' in 'field list'

    新集群CDH版本,刚刚搭建起来,5个节点起了1个hive服务,另外5个节点又单独起了1个hive服务,一共2个人hive服务.老哥对其中的一个hive进行了数据迁移,对hive数据库进行了替换,就这样 ...

  4. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies

    There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...

  5. swift 实践- 03 -- UILabel

    class ViewController: UIViewController { override func viewDidLoad() { super.viewDidLoad() // 标签 let ...

  6. Confluence 6 数据中心的缓存

    在 Confluence 数据中心(集群)你需要分布缓存和每一个节点的缓存.在集群管理界面,将会定义分布缓存和节点本地缓存. 缓存配置文件存储在集群共享目录中的 home 目录下面. https:// ...

  7. SWift中 '?' must be followed by a call, member lookup, or subscript 错误解决方案

    那是因为你在使用自己写的分类时没有指定返回的数据类型  指定下返回数据类型就好了 我是用的oc写的分类在Swift中使用的 错误代码 private lazy var btn = UIButton.C ...

  8. React-Native到0.44版本后Navigator 不能用的问题

    新升级  到0.46版本以后 Navigator 不能使用报错. 'Navigator is deprecated and has been removed from this package. It ...

  9. if __name__ == __'main'__: 判断讲解

    """王思聪作为消费者 要吃热狗生产者 负责做热狗问题:王思聪不清楚对方会生产多少热狗 """from multiprocessing im ...

  10. 第十九单元 nfs服务

    ===============服务端 介绍: NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布.功能是通过 ...