BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组
原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html
题目传送门 - BZOJ3262
题目传送门 - 洛谷P3810
题意
有$n$个元素,第$i$个元素有$a_i$、$b_i$、$c_i$三个属性,设$f(i)$表示满足$a_j\leq a_i$且$b_j\leq b_i$且$c_j\leq c_i$的$j$的数量。对于$d\in [0,n)$,求$f(i)=d$的数量。
$n\leq 100000,max\{a_i,b_i,c_i|i\in[1,n]\}<=200000$
题解
三维偏序模版题。
CDQ分治一波。树套树也可以。
CDQ分治思路:
一维偏序:直接排序。
二维偏序:树状数组。
三维偏序:第3维套CDQ分治。
对于第一维和第二维我们还是按照原样处理。
对于第三维,我们考虑分治。
首先显然要排序。
对于一个区间$[L,R]$,首先求得$mid=\left\lfloor\frac{L+R}{2}\right\rfloor$。
然后考虑先分治$[L,mid]$和$[mid+1,R]$。
然后通过树状数组的做法,用左区间来更新右区间。注意树状数组的还原。
总体来说,对于第3维,是在开始的时候保存了rank。对于第2维,是在递归的过程中归并得到了有序排列。对于第1维,由于一开始排序的时候作为了第3关键字,而归并排序具有稳定性,所以,对于第二维相同的,第三维是有序的。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=100005;
struct Node{
int x,y,z,rank,res;
void get(){
scanf("%d%d%d",&x,&y,&z),res=0;
}
}a[N],b[N];
int n,k,tree[N*2],tot[N];
bool cmp(Node a,Node b){
if (a.x!=b.x)
return a.x<b.x;
if (a.y!=b.y)
return a.y<b.y;
return a.z<b.z;
}
bool issame(Node a,Node b){
return a.x==b.x&&a.y==b.y&&a.z==b.z;
}
void sameadd(){
int tot=1,last=n;
for (int i=n-1;i>=1;i--)
if (issame(a[i],a[last]))
a[i].res+=tot++;
else
last=i,tot=1;
}
int lowbit(int x){
return x&-x;
}
void add(int x,int y){
for (;x<=k;x+=lowbit(x))
tree[x]+=y;
}
int sum(int x){
int ans=0;
for (;x>0;x-=lowbit(x))
ans+=tree[x];
return ans;
}
void CDQ(int L,int R){
if (L==R)
return;
int mid=(L+R)>>1,cnt=L;
CDQ(L,mid),CDQ(mid+1,R);
for (int i=L,l=L,r=mid+1;i<=R;i++)
if (r>R||(l<=mid&&a[l].y<=a[r].y))
b[cnt++]=a[l++];
else
b[cnt++]=a[r++];
for (int i=L;i<=R;i++){
a[i]=b[i];
if (a[i].rank<=mid)
add(a[i].z,1);
else
a[i].res+=sum(a[i].z);
}
for (int i=L;i<=R;i++)
if (a[i].rank<=mid)
add(a[i].z,-1);
}
int main(){
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
a[i].get();
sort(a+1,a+n+1,cmp);
sameadd();
for (int i=1;i<=n;i++)
a[i].rank=i;
memset(tree,0,sizeof tree);
CDQ(1,n);
memset(tot,0,sizeof tot);
for (int i=1;i<=n;i++)
tot[a[i].res]++;
for (int i=0;i<n;i++)
printf("%d\n",tot[i]);
return 0;
}
BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组的更多相关文章
- 洛谷P5069 [Ynoi2015]纵使日薄西山(树状数组,set)
洛谷题目传送门 一血祭 向dllxl致敬! 算是YNOI中比较清新的吧,毕竟代码只有1.25k. 首先我们对着题意模拟,寻找一些思路. 每次选了一个最大的数后,它和它周围两个数都要减一.这样无论如何, ...
- [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)
[NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...
- 洛谷 P4396 (离散化+莫队+树状数组)
### 洛谷P4396 题目链接 ### 题目大意: 有 n 个整数组成的数组,m 次询问,每次询问中有四个参数 l ,r,a,b .问你在[l,r] 的区间内的所有数中,值属于[a,b] 的数的个 ...
- 【题解】洛谷P1966 [NOIP2013TG] 火柴排队(树状数组+逆序对)
次元传送门:洛谷P1966 思路 显然在两排中 每排第i小的分别对应就可取得最小值(对此不给予证明懒) 所以我们只在意两排的火柴是第几根 高度只需要用来进行排序(先把两个序列改成有序的方便离散化) 因 ...
- D 洛谷 P3602 Koishi Loves Segments [贪心 树状数组+堆]
题目描述 Koishi喜欢线段. 她的条线段都能表示成数轴上的某个闭区间.Koishi喜欢在把所有线段都放在数轴上,然后数出某些点被多少线段覆盖了. Flandre看她和线段玩得很起开心,就抛给她一个 ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- 洛谷 : P3374 【模板】树状数组 1 P3368 【模板】树状数组 2
******************************************************************************** 属于模板题了,一个单点修改区间询问,一 ...
- 洛谷P4054 [JSOI2009]计数问题(二维树状数组)
题意 题目链接 Sol 很傻x的题.. c才100, n, m才300,直接开100个二维树状数组就做完了.. #include<bits/stdc++.h> using namespac ...
- 模板【洛谷P3368】 【模板】树状数组 2
P3368 [模板]树状数组 2 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 树状数组区间加,单点查询. code: #include <i ...
随机推荐
- android系统下消息推送机制
一.推送方式简介: 当前随着移动互联网的不断加速,消息推送的功能越来越普遍,不仅仅是应用在邮件推送上了,更多的体现在手机的APP上.当我们开发需要和服务器交互的应用程序时,基本上都需要获取服务器端的数 ...
- css之坑
1.background-size要放在background后边才会生效. 2.隐藏滚动条,内容可以滑动 body::-webkit-scrollbar { display: none /* 隐藏滚动 ...
- textarea的高度随内容变化而变化
<li class="text"> <span>参赛宣言*</span> <textarea name="txt" i ...
- Confluence 6 缓存性能优化
Confluence 的运行状态与缓存状态有这密切的关系.针对 Confluence 的管理员来说,尤其是大型站点的 Confluence 管理员,设置好缓存尤其显得关键. 希望修改缓存的大小: 进入 ...
- vue 循环前十条数据
v-for="(item, index) in items" v-if="index<10"
- mac 端口占用问题
查看端口号 终端输入:sudo lsof -i tcp:port 将port换成被占用的端口(如:8086.9998) 将会出现占用端口的进程信息. 杀死占用端口的PID进程 找到进程的PID,使用k ...
- SSM框架整合篇
目录 SSM整合 框架搭建步骤 SSM整合 Author:SimpleWu github(已上传SSMrest风格简单增删该查实例):https://gitlab.com/450255266/code ...
- LeetCode(70): 爬楼梯
Easy! 题目描述: 假设你正在爬楼梯.需要 n 步你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 ...
- Ubuntu 安装google 拼音
一.安装fcitx apt-get install fcitx 二.安装google pinyin sudo apt install fcitx-googlepinyin 三. 安装 fcitx-co ...
- poj2441状态压缩dp基础
/* 给定n头牛,m个谷仓,每头牛只能在一些特定的谷仓,一个谷仓只能有一头牛 问可行的安排方式 dp[i][j]表示前i头牛组成状态j的方案数,状态0表示无牛,1表示有牛 使用滚动数组即可 枚举到第i ...