Spark面试题汇总及答案(推荐收藏)
一、面试题
Spark
通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?
hadoop和spark使用场景?
spark如何保证宕机迅速恢复?
hadoop和spark的相同点和不同点?
RDD持久化原理?
checkpoint检查点机制?
checkpoint和持久化机制的区别?
RDD机制理解吗?
Spark streaming以及基本工作原理?
DStream以及基本工作原理?
spark有哪些组件?
spark工作机制?
说下宽依赖和窄依赖
Spark主备切换机制原理知道吗?
spark解决了hadoop的哪些问题?
数据倾斜的产生和解决办法?
你用sparksql处理的时候, 处理过程中用的dataframe还是直接写的sql?为什么?
现场写一个笔试题
RDD中reduceBykey与groupByKey哪个性能好,为什么
Spark master HA主从切换过程不会影响到集群已有作业的运行,为什么
spark master使用zookeeper进行ha,有哪些源数据保存到Zookeeper里面
二、答案解析
1. 通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?
spark是借鉴了Mapreduce,并在其基础上发展起来的,继承了其分布式计算的优点并进行了改进,spark生态更为丰富,功能更为强大,性能更加适用范围广,mapreduce更简单,稳定性好。主要区别
(1)spark把运算的中间数据(shuffle阶段产生的数据)存放在内存,迭代计算效率更高,mapreduce的中间结果需要落地,保存到磁盘
(2)Spark容错性高,它通过弹性分布式数据集RDD来实现高效容错,RDD是一组分布式的存储在 节点内存中的只读性的数据集,这些集合石弹性的,某一部分丢失或者出错,可以通过整个数据集的计算流程的血缘关系来实现重建,mapreduce的容错只能重新计算
(3)Spark更通用,提供了transformation和action这两大类的多功能api,另外还有流式处理sparkstreaming模块、图计算等等,mapreduce只提供了map和reduce两种操作,流计算及其他的模块支持比较缺乏
(4)Spark框架和生态更为复杂,有RDD,血缘lineage、执行时的有向无环图DAG,stage划分等,很多时候spark作业都需要根据不同业务场景的需要进行调优以达到性能要求,mapreduce框架及其生态相对较为简单,对性能的要求也相对较弱,运行较为稳定,适合长期后台运行。
(5)Spark计算框架对内存的利用和运行的并行度比mapreduce高,Spark运行容器为executor,内部ThreadPool中线程运行一个Task,mapreduce在线程内部运行container,container容器分类为MapTask和ReduceTask.程序运行并行度高
(6)Spark对于executor的优化,在JVM虚拟机的基础上对内存弹性利用:storage memory与Execution memory的弹性扩容,使得内存利用效率更高
2. hadoop和spark使用场景?
Hadoop/MapReduce和Spark最适合的都是做离线型的数据分析,但Hadoop特别适合是单次分析的数据量“很大”的情景,而Spark则适用于数据量不是很大的情景。
一般情况下,对于中小互联网和企业级的大数据应用而言,单次分析的数量都不会“很大”,因此可以优先考虑使用Spark。
业务通常认为Spark更适用于机器学习之类的“迭代式”应用,80GB的压缩数据(解压后超过200GB),10个节点的集群规模,跑类似“sum+group-by”的应用,MapReduce花了5分钟,而spark只需要2分钟。
3. spark如何保证宕机迅速恢复?
适当增加spark standby master
编写shell脚本,定期检测master状态,出现宕机后对master进行重启操作
4. hadoop和spark的相同点和不同点?
Hadoop底层使用MapReduce计算架构,只有map和reduce两种操作,表达能力比较欠缺,而且在MR过程中会重复的读写hdfs,造成大量的磁盘io读写操作,所以适合高时延环境下批处理计算的应用;
Spark是基于内存的分布式计算架构,提供更加丰富的数据集操作类型,主要分成转化操作和行动操作,包括map、reduce、filter、flatmap、groupbykey、reducebykey、union和join等,数据分析更加快速,所以适合低时延环境下计算的应用;
spark与hadoop最大的区别在于迭代式计算模型。基于mapreduce框架的Hadoop主要分为map和reduce两个阶段,两个阶段完了就结束了,所以在一个job里面能做的处理很有限;spark计算模型是基于内存的迭代式计算模型,可以分为n个阶段,根据用户编写的RDD算子和程序,在处理完一个阶段后可以继续往下处理很多个阶段,而不只是两个阶段。所以spark相较于mapreduce,计算模型更加灵活,可以提供更强大的功能。
但是spark也有劣势,由于spark基于内存进行计算,虽然开发容易,但是真正面对大数据的时候,在没有进行调优的轻局昂下,可能会出现各种各样的问题,比如OOM内存溢出等情况,导致spark程序可能无法运行起来,而mapreduce虽然运行缓慢,但是至少可以慢慢运行完。
5. RDD持久化原理?
spark非常重要的一个功能特性就是可以将RDD持久化在内存中。
调用cache()和persist()方法即可。cache()和persist()的区别在于,cache()是persist()的一种简化方式,cache()的底层就是调用persist()的无参版本persist(MEMORY_ONLY),将数据持久化到内存中。
如果需要从内存中清除缓存,可以使用unpersist()方法。RDD持久化是可以手动选择不同的策略的。在调用persist()时传入对应的StorageLevel即可。
6. checkpoint检查点机制?
应用场景:当spark应用程序特别复杂,从初始的RDD开始到最后整个应用程序完成有很多的步骤,而且整个应用运行时间特别长,这种情况下就比较适合使用checkpoint功能。
原因:对于特别复杂的Spark应用,会出现某个反复使用的RDD,即使之前持久化过但由于节点的故障导致数据丢失了,没有容错机制,所以需要重新计算一次数据。
Checkpoint首先会调用SparkContext的setCheckPointDIR()方法,设置一个容错的文件系统的目录,比如说HDFS;然后对RDD调用checkpoint()方法。之后在RDD所处的job运行结束之后,会启动一个单独的job,来将checkpoint过的RDD数据写入之前设置的文件系统,进行高可用、容错的类持久化操作。
检查点机制是我们在spark streaming中用来保障容错性的主要机制,它可以使spark streaming阶段性的把应用数据存储到诸如HDFS等可靠存储系统中,以供恢复时使用。具体来说基于以下两个目的服务:
控制发生失败时需要重算的状态数。Spark streaming可以通过转化图的谱系图来重算状态,检查点机制则可以控制需要在转化图中回溯多远。
提供驱动器程序容错。如果流计算应用中的驱动器程序崩溃了,你可以重启驱动器程序并让驱动器程序从检查点恢复,这样spark streaming就可以读取之前运行的程序处理数据的进度,并从那里继续。
7. checkpoint和持久化机制的区别?
最主要的区别在于持久化只是将数据保存在BlockManager中,但是RDD的lineage(血缘关系,依赖关系)是不变的。但是checkpoint执行完之后,rdd已经没有之前所谓的依赖rdd了,而只有一个强行为其设置的checkpointRDD,checkpoint之后rdd的lineage就改变了。
持久化的数据丢失的可能性更大,因为节点的故障会导致磁盘、内存的数据丢失。但是checkpoint的数据通常是保存在高可用的文件系统中,比如HDFS中,所以数据丢失可能性比较低
8. RDD机制理解吗?
rdd分布式弹性数据集,简单的理解成一种数据结构,是spark框架上的通用货币。所有算子都是基于rdd来执行的,不同的场景会有不同的rdd实现类,但是都可以进行互相转换。rdd执行过程中会形成dag图,然后形成lineage保证容错性等。从物理的角度来看rdd存储的是block和node之间的映射。
RDD是spark提供的核心抽象,全称为弹性分布式数据集。
RDD在逻辑上是一个hdfs文件,在抽象上是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同结点上,从而让RDD中的数据可以被并行操作(分布式数据集)
比如有个RDD有90W数据,3个partition,则每个分区上有30W数据。RDD通常通过Hadoop上的文件,即HDFS或者HIVE表来创建,还可以通过应用程序中的集合来创建;RDD最重要的特性就是容错性,可以自动从节点失败中恢复过来。即如果某个结点上的RDD partition因为节点故障,导致数据丢失,那么RDD可以通过自己的数据来源重新计算该partition。这一切对使用者都是透明的。
RDD的数据默认存放在内存中,但是当内存资源不足时,spark会自动将RDD数据写入磁盘。比如某结点内存只能处理20W数据,那么这20W数据就会放入内存中计算,剩下10W放到磁盘中。RDD的弹性体现在于RDD上自动进行内存和磁盘之间权衡和切换的机制。
9. Spark streaming以及基本工作原理?
Spark streaming是spark core API的一种扩展,可以用于进行大规模、高吞吐量、容错的实时数据流的处理。
它支持从多种数据源读取数据,比如Kafka、Flume、Twitter和TCP Socket,并且能够使用算子比如map、reduce、join和window等来处理数据,处理后的数据可以保存到文件系统、数据库等存储中。
Spark streaming内部的基本工作原理是:接受实时输入数据流,然后将数据拆分成batch,比如每收集一秒的数据封装成一个batch,然后将每个batch交给spark的计算引擎进行处理,最后会生产处一个结果数据流,其中的数据也是一个一个的batch组成的。
10. DStream以及基本工作原理?
DStream是spark streaming提供的一种高级抽象,代表了一个持续不断的数据流。
DStream可以通过输入数据源来创建,比如Kafka、flume等,也可以通过其他DStream的高阶函数来创建,比如map、reduce、join和window等。
DStream内部其实不断产生RDD,每个RDD包含了一个时间段的数据。
Spark streaming一定是有一个输入的DStream接收数据,按照时间划分成一个一个的batch,并转化为一个RDD,RDD的数据是分散在各个子节点的partition中。
11. spark有哪些组件?
master:管理集群和节点,不参与计算。
worker:计算节点,进程本身不参与计算,和master汇报。
Driver:运行程序的main方法,创建spark context对象。
spark context:控制整个application的生命周期,包括dagsheduler和task scheduler等组件。
client:用户提交程序的入口。
12. spark工作机制?
用户在client端提交作业后,会由Driver运行main方法并创建spark context上下文。执行add算子,形成dag图输入dagscheduler,按照add之间的依赖关系划分stage输入task scheduler。task scheduler会将stage划分为task set分发到各个节点的executor中执行。
13. 说下宽依赖和窄依赖
宽依赖:
本质就是shuffle。父RDD的每一个partition中的数据,都可能会传输一部分到下一个子RDD的每一个partition中,此时会出现父RDD和子RDD的partition之间具有交互错综复杂的关系,这种情况就叫做两个RDD之间是宽依赖。
窄依赖:
父RDD和子RDD的partition之间的对应关系是一对一的。
14. Spark主备切换机制原理知道吗?
Master实际上可以配置两个,Spark原生的standalone模式是支持Master主备切换的。当Active Master节点挂掉以后,我们可以将Standby Master切换为Active Master。
Spark Master主备切换可以基于两种机制,一种是基于文件系统的,一种是基于ZooKeeper的。
基于文件系统的主备切换机制,需要在Active Master挂掉之后手动切换到Standby Master上;
而基于Zookeeper的主备切换机制,可以实现自动切换Master。
15. spark解决了hadoop的哪些问题?
MR:抽象层次低,需要使用手工代码来完成程序编写,使用上难以上手;
Spark:Spark采用RDD计算模型,简单容易上手。
MR:只提供map和reduce两个操作,表达能力欠缺;
Spark:Spark采用更加丰富的算子模型,包括map、flatmap、groupbykey、reducebykey等;
MR:一个job只能包含map和reduce两个阶段,复杂的任务需要包含很多个job,这些job之间的管理以来需要开发者自己进行管理;
Spark:Spark中一个job可以包含多个转换操作,在调度时可以生成多个stage,而且如果多个map操作的分区不变,是可以放在同一个task里面去执行;
MR:中间结果存放在hdfs中;
Spark:Spark的中间结果一般存在内存中,只有当内存不够了,才会存入本地磁盘,而不是hdfs;
MR:只有等到所有的map task执行完毕后才能执行reduce task;
Spark:Spark中分区相同的转换构成流水线在一个task中执行,分区不同的需要进行shuffle操作,被划分成不同的stage需要等待前面的stage执行完才能执行。
MR:只适合batch批处理,时延高,对于交互式处理和实时处理支持不够;
Spark:Spark streaming可以将流拆成时间间隔的batch进行处理,实时计算。
16. 数据倾斜的产生和解决办法?
数据倾斜以为着某一个或者某几个partition的数据特别大,导致这几个partition上的计算需要耗费相当长的时间。
在spark中同一个应用程序划分成多个stage,这些stage之间是串行执行的,而一个stage里面的多个task是可以并行执行,task数目由partition数目决定,如果一个partition的数目特别大,那么导致这个task执行时间很长,导致接下来的stage无法执行,从而导致整个job执行变慢。
避免数据倾斜,一般是要选用合适的key,或者自己定义相关的partitioner,通过加盐或者哈希值来拆分这些key,从而将这些数据分散到不同的partition去执行。
如下算子会导致shuffle操作,是导致数据倾斜可能发生的关键点所在:groupByKey;reduceByKey;aggregaByKey;join;cogroup;
17. 你用sparksql处理的时候, 处理过程中用的dataframe还是直接写的sql?为什么?
这个问题的宗旨是问你spark sql 中dataframe和sql的区别,从执行原理、操作方便程度和自定义程度来分析这个问题。
18. 现场写一个笔试题
有hdfs文件,文件每行的格式为作品ID,用户id,用户性别。请用一个spark任务实现以下功能:统计每个作品对应的用户(去重后)的性别分布。输出格式如下:作品ID,男性用户数量,女性用户数量
答案:
- sc.textfile() .flatmap(.split(","))//分割成作
- 品ID,用户id,用户性别
- .map(((_.1,_._2),1))//((作品id,用户性别),1)
- .reduceByKey(_+_)//((作品id,用户性别),n)
- .map(_._1._1,_._1._2,_._2)//(作品id,用户性别,n)
19. RDD中reduceBykey与groupByKey哪个性能好,为什么
reduceByKey:reduceByKey会在结果发送至reducer之前会对每个mapper在本地进行merge,有点类似于在MapReduce中的combiner。这样做的好处在于,在map端进行一次reduce之后,数据量会大幅度减小,从而减小传输,保证reduce端能够更快的进行结果计算。
groupByKey:groupByKey会对每一个RDD中的value值进行聚合形成一个序列(Iterator),此操作发生在reduce端,所以势必会将所有的数据通过网络进行传输,造成不必要的浪费。同时如果数据量十分大,可能还会造成OutOfMemoryError。
所以在进行大量数据的reduce操作时候建议使用reduceByKey。不仅可以提高速度,还可以防止使用groupByKey造成的内存溢出问题。
20. Spark master HA主从切换过程不会影响到集群已有作业的运行,为什么
不会的。
因为程序在运行之前,已经申请过资源了,driver和Executors通讯,不需要和master进行通讯的。
21. spark master使用zookeeper进行ha,有哪些源数据保存到Zookeeper里面
spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors。standby节点要从zk中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。
- 1、在Master切换的过程中,所有的已经在运行的程序皆正常运行!
- 因为Spark Application在运行前就已经通过Cluster Manager获得了
- 计算资源,所以在运行时Job本身的
- 调度和处理和Master是没有任何关系。
- 2、在Master的切换过程中唯一的影响是不能提交新的Job:
- 一方面不能够提交新的应用程序给集群,
- 因为只有Active Master才能接受新的程序的提交请求;
- 另外一方面,已经运行的程序中也不能够因
- Action操作触发新的Job的提交请求。
Spark面试题汇总及答案(推荐收藏)的更多相关文章
- .NET 面试题汇总(带答案)
1.维护数据库的完整性.一致性.你喜欢用触发器还是自写业务逻辑?为什么? 答:尽可能用约束(包括CHECK.主键.唯一键.外键.非空字段)实现,这种方式的效率最好:其次用触发器,这种方式可以保证无论何 ...
- ASP net core面试题汇总及答案
在dot net core中,我们不需要关心如何释放这些服务, 因为系统会帮我们释放掉.有三种服务的生命周期. 单实例服务, 通过add singleton方法来添加.在注册时即创建服务, 在随后的请 ...
- 收藏所用C#技术类面试、笔试题汇总
技术类面试.笔试题汇总 注:标明*的问题属于选择性掌握的内容,能掌握更好,没掌握也没关系. 下面的参考解答只是帮助大家理解,不用背,面试题.笔试题千变万化,不要梦想着把题覆盖了,下面的题是供大家查漏补 ...
- Java面试题汇总---升级版(附答案)
前几天写了Java面试题汇总---基础版,总结了面试中常见的问题及答案,那我今天基于昨天的话题做一次升级,也就是说,求职者除了要学习了解哪些常见的基础面试题之外,还得准备些什么呢? 对有工作经验的求职 ...
- Linux面试题汇总答案
转自:小女生的Linux技术~~~Linux面试题汇总答案~~ 一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的 ...
- php面试题汇总二(基础篇附答案)
介绍一些php常见面试题及答案,都是平时面试的时候经常会遇到的,小伙伴们仔细了解下吧.接着上一篇php面试题汇总一(基础篇附答案) 1.在PHP中,当前脚本的名称(不包括路径和查询字符串)记录在预定义 ...
- Linux面试题汇总答案(转)
转自:小女生的Linux技术~~~Linux面试题汇总答案~~ 一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的 ...
- 史上最全的spark面试题——持续更新中
史上最全的spark面试题——持续更新中 2018年09月09日 16:34:10 为了九亿少女的期待 阅读数 13696更多 分类专栏: Spark 面试题 版权声明:本文为博主原创文章,遵循C ...
- Python面试题汇总
原文:http://blog.csdn.net/jerry_1126/article/details/44023949 拿网络上关于Python的面试题汇总了,给出了自认为合理的答案,有些题目不错,可 ...
- 【转】C++笔试题汇总
原文:http://www.cnblogs.com/ifaithu/articles/2657663.html C#C++C多线程面试1.static有什么用途?(请至少说明两种)1)在函数体,一个被 ...
随机推荐
- 1.flask 源码解析:简介
目录 一.flask 源码解析:简介 1.1 flask 简介 1.2 两个依赖 1.2.1 werkzeug 1.2.2 Jinja2 1.3 如何读代码 Flask 源码分析完整教程目录:http ...
- Redis实现幂等、防抖、限流等功能
本文章主要讲述如何使用Redis实现幂等.防抖.限流等功能. 幂等组件 import lombok.RequiredArgsConstructor; import org.springframewor ...
- 浅析RocketMQ
SpringBoot引入RocketMQ 快速构建单机RocketMQ https://www.haveyb.com/article/3079 参考这篇文章,快速构建单机RocketMQ 项目引入ja ...
- Java受保护的访问修饰符protected
声明:我不去上来给大家那一张被扯来扯去的√,×表,什么表想必大家心里清楚 下面进入正题: protected 的主要着眼点在于两点: 1.子类继承 2.是否同包 心里记着上面的那两点,那么protec ...
- 学习JavaScript第三天
文章目录 1.数组 1.1创建数组 1.2数组方法 1.3数组遍历 2.函数 2.1函数的定义 2.2函数的参数以及返回值 2.3函数的作用域 2.4函数传参 3.对象 1.数组 在JavaScrip ...
- NES 模拟器中音画同步问题
背景 模拟器是与游戏和播放器都有相似之处的系统.模拟器与游戏的相似之处,在于都需要一个采集输入--执行逻辑--然后按一定帧率(通常是 60 FPS)把画面显示出来的循环.但是模拟器又需要模拟音频设备, ...
- buck电路 & boost电路
buck电路 buck电路是直流的降压电路,我们下面给大家讲下,如何把12V的直流电压降压成5V的直流电压 1.buck电路拓扑:12V----->5V 2.降压原理 a.开关闭合,电流走向 电 ...
- Next.js 实战开发入门 1 开发环境部署 - 曲速引擎 Warp Drive
开发目标 我们将构建一个简化版本的财务仪表板,其内容包括:公共主页.登录页面.受身份验证保护的仪表板页面.用户可以添加.编辑和删除发票 开发环境配置 开发客户端 Windows 10 (不限系统,兼容 ...
- ATC:多快好省,无参数token reduction方法 | ECCV'24
来源:晓飞的算法工程笔记 公众号,转载请注明出处 论文: Agglomerative Token Clustering 论文地址:https://arxiv.org/abs/2409.11923 论文 ...
- 2.11 Linux四种远程管理协议
提到远程管理,通常指的是远程管理服务器,而非个人计算机.个人计算机可以随时拿来用,服务器通常放置在机房中,用户无法直接接触到服务器硬件,只能采用远程管理的方式. 远程管理,实际上就是计算机(服务器)之 ...