【CF850E】Random Elections

题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列。现在进行三次比较,A-B,B-C,C-A。每次比较的结果由一个给定的函数决定$f(x):{0,1}^n\rightarrow {0,1}$,即读入一个长度为n的bool数组,返回一个bool变量。假如是A和B比较,则读入数组的第i个bool是 第i个人的排列中,A是否在B的前面;返回的bool是 A获胜还是B获胜。现在给你函数f(一张包含2^n个bool的表),所有选民的方案都是随机的,问你有多少种方案使得 存在一个预选者获得2场胜利。

如果嫌我说的太不清楚还是看原题吧~

题解:假设A赢了两场,那么我们设两次比较时的bool数组为$A-B:P_1$和$A-C:P_2$,考虑第i个人:

如果在$P_1$中这个人是0,在$P_2$中这个人是0,那么这个人可能的投票方案为CBA,BCA
同理得到:
(0,0)->CBA,BCA
(0,1)->BAC
(1,0)->CAB
(1,1)->ABC,ACB
所以说,如果$P_1\ \mathrm{xor}\ P_2$中有cnt个1,那么投票方案就是$2^{n-cnt}$。

也就是说我们把f数组和自身做一下异或卷积,然后把每一个数的值$\times 2^{n-cnt}$加到一起即可。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007;
const int maxn=(1<<20)+4;
int n,l;
ll ans;
int cnt[maxn];
ll a[maxn];
char str[maxn];
inline void fwt()
{
int h,i,j;
ll x,y;
for(h=2;h<=l;h<<=1) for(i=0;i<l;i+=h) for(j=i;j<i+h/2;j++) x=a[j],y=a[j+h/2],a[j]=x+y,a[j+h/2]=x-y;
}
inline void ufwt()
{
int h,i,j;
ll x,y;
for(h=2;h<=l;h<<=1) for(i=0;i<l;i+=h) for(j=i;j<i+h/2;j++) x=a[j],y=a[j+h/2],a[j]=(x+y)/2,a[j+h/2]=(x-y)/2;
}
int main()
{
scanf("%d",&n),l=1<<n;
int i;
scanf("%s",str);
for(i=0;i<l;i++) a[i]=str[i]-'0';
fwt();
for(i=0;i<l;i++) a[i]=a[i]*a[i];
ufwt();
ans=a[0]*l%P;
for(i=1;i<l;i++) cnt[i]=cnt[i-(i&-i)]+1,ans=(ans+a[i]*(1<<(n-cnt[i])))%P;
printf("%lld",ans*3%P);
return 0;
}

【CF850E】Random Elections FWT的更多相关文章

  1. 【CF850E】Random Elections(FWT)

    [CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...

  2. 【CSU1911】Card Game(FWT)

    [CSU1911]Card Game(FWT) 题面 vjudge 题目大意: 给定两个含有\(n\)个数的数组 每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\) ...

  3. 【题解】毒蛇越狱(FWT+容斥)

    [题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...

  4. 【CF772D】Varying Kibibits FWT

    [CF772D]Varying Kibibits 题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数.如f(123,321)=121,f(530,  ...

  5. 【XSY2753】Lcm 分治 FWT FFT 容斥

    题目描述 给你\(n,k\),要你选一些互不相同的正整数,满足这些数的\(lcm\)为\(n\),且这些数的和为\(k\)的倍数. 求选择的方案数.对\(232792561\)取模. \(n\leq ...

  6. ZH奶酪:【Python】random模块

    Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...

  7. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  8. 【learning】快速沃尔什变换FWT

    问题描述 已知\(A(x)\)和\(B(x)\),\(C[i]=\sum\limits_{j\otimes k=i}A[j]*B[k]\),求\(C\) 其中\(\otimes\)是三种位运算的其中一 ...

  9. 【bzoj4589】Hard Nim FWT

    题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走, ...

随机推荐

  1. 【转】ZooKeeper详细介绍和使用第一节

    一.分布式协调技术 在给大家介绍ZooKeeper之前先来给大家介绍一种技术——分布式协调技术.那么什么是分布式协调技术?那么我来告诉大家,其实分布式协调技术 主要用来解决分布式环境当中多个进程之间的 ...

  2. 关于移位运算符>>和<<

    首先,移位运算符有三种,其操作类型只支持:byte / short / char / int和long五种. << 左移运算符,表示将左边的操作数的二进制数据向左移动*位,移动后空缺位以0 ...

  3. Dubbo -- 系统学习 笔记 -- 示例 -- 只订阅

    Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 只订阅 问题 为方便开发测试,经常会在线下共用一个所有服务可用的注册中心,这时,如 ...

  4. joda time, jackson 与 scala 反射

    1. scala 反射,获得所有 field name 可以直接从 case class 获得 field 而不必创建实例 (get fields of a class without an inst ...

  5. 由于OBJ模型的读取引起的Release无问题Debug卡死问题

    有些时候会遇到Release版本正常运行,但是Debug无法运行甚至崩溃,原因有很多种,这里记录一下由于模型文件读取引起的Debug问题. 项目中需要读取一个obj模型文件,30M左右,Debug模式 ...

  6. [C] include <filename> 和 include "filename" 的区别

    在 C 语言中包含语句 #include <filename> 和 #include "filename" 的区别在于编译器的偏好,一般来说,使用双引号表示优先搜索当前 ...

  7. Java的Integer和int有什么区别

    Java是面向对象的编程语言,一切都是对象,但是为了编程的方便还是引入了基本数据类型,为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrapper cla ...

  8. URL地址重写例子(Helicon)

    # Helicon ISAPI_Rewrite configuration file# Version 3.1.0.86 #RewriteEngine on RewriteRule ^/esf/.+( ...

  9. SFTP文件下载

    FTP并不是唯一的上传文件的方法,大部分情况下都可使用sftp代替.sftp是什么呢? sftp是Secure File Transfer Protocol的缩写,安全文件传送协议.可以为传输文件提供 ...

  10. 节日换肤通用技术方案__iOS端实现

    一.问题的提出 不知道大家有没有发现, 元旦期间, 很多APP界面里的图标都换成了具有节日气氛的样式, 而在过了元旦节之后, 这些图标又悄无声息的变回了本来的面貌. 这些具有短暂生命周期.而又必须在固 ...