# encoding: utf-8
# module __builtin__
# from (built-in)
# by generator 1.145
from __future__ import print_function
"""
Built-in functions, exceptions, and other objects. Noteworthy: None is the `nil' object; Ellipsis represents `...' in slices.
""" # imports
from exceptions import (ArithmeticError, AssertionError, AttributeError,
BaseException, BufferError, BytesWarning, DeprecationWarning, EOFError,
EnvironmentError, Exception, FloatingPointError, FutureWarning,
GeneratorExit, IOError, ImportError, ImportWarning, IndentationError,
IndexError, KeyError, KeyboardInterrupt, LookupError, MemoryError,
NameError, NotImplementedError, OSError, OverflowError,
PendingDeprecationWarning, ReferenceError, RuntimeError, RuntimeWarning,
StandardError, StopIteration, SyntaxError, SyntaxWarning, SystemError,
SystemExit, TabError, TypeError, UnboundLocalError, UnicodeDecodeError,
UnicodeEncodeError, UnicodeError, UnicodeTranslateError, UnicodeWarning,
UserWarning, ValueError, Warning, ZeroDivisionError) # Variables with simple values False = False None = object() # real value of type <type 'NoneType'> replaced True = True __debug__ = True # functions def abs(number): # real signature unknown; restored from __doc__
"""
abs(number) -> number Return the absolute value of the argument.
"""
return 0 def all(iterable): # real signature unknown; restored from __doc__
"""
all(iterable) -> bool Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.
"""
return False def any(iterable): # real signature unknown; restored from __doc__
"""
any(iterable) -> bool Return True if bool(x) is True for any x in the iterable.
If the iterable is empty, return False.
"""
return False def apply(p_object, args=None, kwargs=None): # real signature unknown; restored from __doc__
"""
apply(object[, args[, kwargs]]) -> value Call a callable object with positional arguments taken from the tuple args,
and keyword arguments taken from the optional dictionary kwargs.
Note that classes are callable, as are instances with a __call__() method. Deprecated since release 2.3. Instead, use the extended call syntax:
function(*args, **keywords).
"""
pass def bin(number): # real signature unknown; restored from __doc__
"""
bin(number) -> string Return the binary representation of an integer or long integer.
"""
return "" def callable(p_object): # real signature unknown; restored from __doc__
"""
callable(object) -> bool Return whether the object is callable (i.e., some kind of function).
Note that classes are callable, as are instances with a __call__() method.
"""
return False def chr(i): # real signature unknown; restored from __doc__
"""
chr(i) -> character Return a string of one character with ordinal i; 0 <= i < 256.
"""
return "" def cmp(x, y): # real signature unknown; restored from __doc__
"""
cmp(x, y) -> integer Return negative if x<y, zero if x==y, positive if x>y.
"""
return 0 def coerce(x, y): # real signature unknown; restored from __doc__
"""
coerce(x, y) -> (x1, y1) Return a tuple consisting of the two numeric arguments converted to
a common type, using the same rules as used by arithmetic operations.
If coercion is not possible, raise TypeError.
"""
pass def compile(source, filename, mode, flags=None, dont_inherit=None): # real signature unknown; restored from __doc__
"""
compile(source, filename, mode[, flags[, dont_inherit]]) -> code object Compile the source string (a Python module, statement or expression)
into a code object that can be executed by the exec statement or eval().
The filename will be used for run-time error messages.
The mode must be 'exec' to compile a module, 'single' to compile a
single (interactive) statement, or 'eval' to compile an expression.
The flags argument, if present, controls which future statements influence
the compilation of the code.
The dont_inherit argument, if non-zero, stops the compilation inheriting
the effects of any future statements in effect in the code calling
compile; if absent or zero these statements do influence the compilation,
in addition to any features explicitly specified.
"""
pass def copyright(*args, **kwargs): # real signature unknown
"""
interactive prompt objects for printing the license text, a list of
contributors and the copyright notice.
"""
pass def credits(*args, **kwargs): # real signature unknown
"""
interactive prompt objects for printing the license text, a list of
contributors and the copyright notice.
"""
pass def delattr(p_object, name): # real signature unknown; restored from __doc__
"""
delattr(object, name) Delete a named attribute on an object; delattr(x, 'y') is equivalent to
``del x.y''.
"""
pass def dir(p_object=None): # real signature unknown; restored from __doc__
"""
dir([object]) -> list of strings If called without an argument, return the names in the current scope.
Else, return an alphabetized list of names comprising (some of) the attributes
of the given object, and of attributes reachable from it.
If the object supplies a method named __dir__, it will be used; otherwise
the default dir() logic is used and returns:
for a module object: the module's attributes.
for a class object: its attributes, and recursively the attributes
of its bases.
for any other object: its attributes, its class's attributes, and
recursively the attributes of its class's base classes.
"""
return [] def divmod(x, y): # known case of __builtin__.divmod
"""
divmod(x, y) -> (quotient, remainder) Return the tuple (x//y, x%y). Invariant: div*y + mod == x.
"""
return (0, 0) def eval(source, globals=None, locals=None): # real signature unknown; restored from __doc__
"""
eval(source[, globals[, locals]]) -> value Evaluate the source in the context of globals and locals.
The source may be a string representing a Python expression
or a code object as returned by compile().
The globals must be a dictionary and locals can be any mapping,
defaulting to the current globals and locals.
If only globals is given, locals defaults to it.
"""
pass def execfile(filename, globals=None, locals=None): # real signature unknown; restored from __doc__
"""
execfile(filename[, globals[, locals]]) Read and execute a Python script from a file.
The globals and locals are dictionaries, defaulting to the current
globals and locals. If only globals is given, locals defaults to it.
"""
pass def exit(*args, **kwargs): # real signature unknown
pass def filter(function_or_none, sequence): # known special case of filter
"""
filter(function or None, sequence) -> list, tuple, or string Return those items of sequence for which function(item) is true. If
function is None, return the items that are true. If sequence is a tuple
or string, return the same type, else return a list.
"""
pass def format(value, format_spec=None): # real signature unknown; restored from __doc__
"""
format(value[, format_spec]) -> string Returns value.__format__(format_spec)
format_spec defaults to ""
"""
return "" def getattr(object, name, default=None): # known special case of getattr
"""
getattr(object, name[, default]) -> value Get a named attribute from an object; getattr(x, 'y') is equivalent to x.y.
When a default argument is given, it is returned when the attribute doesn't
exist; without it, an exception is raised in that case.
"""
pass def globals(): # real signature unknown; restored from __doc__
"""
globals() -> dictionary Return the dictionary containing the current scope's global variables.
"""
return {} def hasattr(p_object, name): # real signature unknown; restored from __doc__
"""
hasattr(object, name) -> bool Return whether the object has an attribute with the given name.
(This is done by calling getattr(object, name) and catching exceptions.)
"""
return False def hash(p_object): # real signature unknown; restored from __doc__
"""
hash(object) -> integer Return a hash value for the object. Two objects with the same value have
the same hash value. The reverse is not necessarily true, but likely.
"""
return 0 def help(with_a_twist): # real signature unknown; restored from __doc__
"""
Define the builtin 'help'.
This is a wrapper around pydoc.help (with a twist).
"""
pass def hex(number): # real signature unknown; restored from __doc__
"""
hex(number) -> string Return the hexadecimal representation of an integer or long integer.
"""
return "" def id(p_object): # real signature unknown; restored from __doc__
"""
id(object) -> integer Return the identity of an object. This is guaranteed to be unique among
simultaneously existing objects. (Hint: it's the object's memory address.)
"""
return 0 def input(prompt=None): # real signature unknown; restored from __doc__
"""
input([prompt]) -> value Equivalent to eval(raw_input(prompt)).
"""
pass def intern(string): # real signature unknown; restored from __doc__
"""
intern(string) -> string ``Intern'' the given string. This enters the string in the (global)
table of interned strings whose purpose is to speed up dictionary lookups.
Return the string itself or the previously interned string object with the
same value.
"""
return "" def isinstance(p_object, class_or_type_or_tuple): # real signature unknown; restored from __doc__
"""
isinstance(object, class-or-type-or-tuple) -> bool Return whether an object is an instance of a class or of a subclass thereof.
With a type as second argument, return whether that is the object's type.
The form using a tuple, isinstance(x, (A, B, ...)), is a shortcut for
isinstance(x, A) or isinstance(x, B) or ... (etc.).
"""
return False def issubclass(C, B): # real signature unknown; restored from __doc__
"""
issubclass(C, B) -> bool Return whether class C is a subclass (i.e., a derived class) of class B.
When using a tuple as the second argument issubclass(X, (A, B, ...)),
is a shortcut for issubclass(X, A) or issubclass(X, B) or ... (etc.).
"""
return False def iter(source, sentinel=None): # known special case of iter
"""
iter(collection) -> iterator
iter(callable, sentinel) -> iterator Get an iterator from an object. In the first form, the argument must
supply its own iterator, or be a sequence.
In the second form, the callable is called until it returns the sentinel.
"""
pass def len(p_object): # real signature unknown; restored from __doc__
"""
len(object) -> integer Return the number of items of a sequence or collection.
"""
return 0 def license(*args, **kwargs): # real signature unknown
"""
interactive prompt objects for printing the license text, a list of
contributors and the copyright notice.
"""
pass def locals(): # real signature unknown; restored from __doc__
"""
locals() -> dictionary Update and return a dictionary containing the current scope's local variables.
"""
return {} def map(function, sequence, *sequence_1): # real signature unknown; restored from __doc__
"""
map(function, sequence[, sequence, ...]) -> list Return a list of the results of applying the function to the items of
the argument sequence(s). If more than one sequence is given, the
function is called with an argument list consisting of the corresponding
item of each sequence, substituting None for missing values when not all
sequences have the same length. If the function is None, return a list of
the items of the sequence (or a list of tuples if more than one sequence).
"""
return [] def max(*args, **kwargs): # known special case of max
"""
max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.
"""
pass def min(*args, **kwargs): # known special case of min
"""
min(iterable[, key=func]) -> value
min(a, b, c, ...[, key=func]) -> value With a single iterable argument, return its smallest item.
With two or more arguments, return the smallest argument.
"""
pass def next(iterator, default=None): # real signature unknown; restored from __doc__
"""
next(iterator[, default]) Return the next item from the iterator. If default is given and the iterator
is exhausted, it is returned instead of raising StopIteration.
"""
pass def oct(number): # real signature unknown; restored from __doc__
"""
oct(number) -> string Return the octal representation of an integer or long integer.
"""
return "" def open(name, mode=None, buffering=None): # real signature unknown; restored from __doc__
"""
open(name[, mode[, buffering]]) -> file object Open a file using the file() type, returns a file object. This is the
preferred way to open a file. See file.__doc__ for further information.
"""
return file('/dev/null') def ord(c): # real signature unknown; restored from __doc__
"""
ord(c) -> integer Return the integer ordinal of a one-character string.
"""
return 0 def pow(x, y, z=None): # real signature unknown; restored from __doc__
"""
pow(x, y[, z]) -> number With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for longs).
"""
return 0 def print(*args, **kwargs): # known special case of print
"""
print(value, ..., sep=' ', end='\n', file=sys.stdout) Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
"""
pass def quit(*args, **kwargs): # real signature unknown
pass def range(start=None, stop=None, step=None): # known special case of range
"""
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.
"""
pass def raw_input(prompt=None): # real signature unknown; restored from __doc__
"""
raw_input([prompt]) -> string Read a string from standard input. The trailing newline is stripped.
If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z+Return), raise EOFError.
On Unix, GNU readline is used if enabled. The prompt string, if given,
is printed without a trailing newline before reading.
"""
return "" def reduce(function, sequence, initial=None): # real signature unknown; restored from __doc__
"""
reduce(function, sequence[, initial]) -> value Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.
"""
pass def reload(module): # real signature unknown; restored from __doc__
"""
reload(module) -> module Reload the module. The module must have been successfully imported before.
"""
pass def repr(p_object): # real signature unknown; restored from __doc__
"""
repr(object) -> string Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.
"""
return "" def round(number, ndigits=None): # real signature unknown; restored from __doc__
"""
round(number[, ndigits]) -> floating point number Round a number to a given precision in decimal digits (default 0 digits).
This always returns a floating point number. Precision may be negative.
"""
return 0.0 def setattr(p_object, name, value): # real signature unknown; restored from __doc__
"""
setattr(object, name, value) Set a named attribute on an object; setattr(x, 'y', v) is equivalent to
``x.y = v''.
"""
pass def sorted(iterable, cmp=None, key=None, reverse=False): # real signature unknown; restored from __doc__
""" sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list """
pass def sum(iterable, start=None): # real signature unknown; restored from __doc__
"""
sum(iterable[, start]) -> value Return the sum of an iterable or sequence of numbers (NOT strings)
plus the value of 'start' (which defaults to 0). When the sequence is
empty, return start.
"""
pass def unichr(i): # real signature unknown; restored from __doc__
"""
unichr(i) -> Unicode character Return a Unicode string of one character with ordinal i; 0 <= i <= 0x10ffff.
"""
return u"" def vars(p_object=None): # real signature unknown; restored from __doc__
"""
vars([object]) -> dictionary Without arguments, equivalent to locals().
With an argument, equivalent to object.__dict__.
"""
return {} def zip(seq1, seq2, *more_seqs): # known special case of zip
"""
zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)] Return a list of tuples, where each tuple contains the i-th element
from each of the argument sequences. The returned list is truncated
in length to the length of the shortest argument sequence.
"""
pass def __import__(name, globals={}, locals={}, fromlist=[], level=-1): # real signature unknown; restored from __doc__
"""
__import__(name, globals={}, locals={}, fromlist=[], level=-1) -> module Import a module. Because this function is meant for use by the Python
interpreter and not for general use it is better to use
importlib.import_module() to programmatically import a module. The globals argument is only used to determine the context;
they are not modified. The locals argument is unused. The fromlist
should be a list of names to emulate ``from name import ...'', or an
empty list to emulate ``import name''.
When importing a module from a package, note that __import__('A.B', ...)
returns package A when fromlist is empty, but its submodule B when
fromlist is not empty. Level is used to determine whether to perform
absolute or relative imports. -1 is the original strategy of attempting
both absolute and relative imports, 0 is absolute, a positive number
is the number of parent directories to search relative to the current module.
"""
pass # classes class ___Classobj:
'''A mock class representing the old style class base.'''
__module__ = ''
__class__ = None def __init__(self):
pass
__dict__ = {}
__doc__ = '' class __generator(object):
'''A mock class representing the generator function type.'''
def __init__(self):
self.gi_code = None
self.gi_frame = None
self.gi_running = 0 def __iter__(self):
'''Defined to support iteration over container.'''
pass def next(self):
'''Return the next item from the container.'''
pass def close(self):
'''Raises new GeneratorExit exception inside the generator to terminate the iteration.'''
pass def send(self, value):
'''Resumes the generator and "sends" a value that becomes the result of the current yield-expression.'''
pass def throw(self, type, value=None, traceback=None):
'''Used to raise an exception inside the generator.'''
pass class __asyncgenerator(object):
'''A mock class representing the async generator function type.'''
def __init__(self):
'''Create an async generator object.'''
self.__name__ = ''
self.__qualname__ = ''
self.ag_await = None
self.ag_frame = None
self.ag_running = False
self.ag_code = None def __aiter__(self):
'''Defined to support iteration over container.'''
pass def __anext__(self):
'''Returns an awaitable, that performs one asynchronous generator iteration when awaited.'''
pass def aclose(self):
'''Returns an awaitable, that throws a GeneratorExit exception into generator.'''
pass def asend(self, value):
'''Returns an awaitable, that pushes the value object in generator.'''
pass def athrow(self, type, value=None, traceback=None):
'''Returns an awaitable, that throws an exception into generator.'''
pass class __function(object):
'''A mock class representing function type.''' def __init__(self):
self.__name__ = ''
self.__doc__ = ''
self.__dict__ = ''
self.__module__ = '' self.func_defaults = {}
self.func_globals = {}
self.func_closure = None
self.func_code = None
self.func_name = ''
self.func_doc = ''
self.func_dict = '' self.__defaults__ = {}
self.__globals__ = {}
self.__closure__ = None
self.__code__ = None
self.__name__ = '' class __method(object):
'''A mock class representing method type.''' def __init__(self): self.im_class = None
self.im_self = None
self.im_func = None self.__func__ = None
self.__self__ = None class __namedtuple(tuple):
'''A mock base class for named tuples.''' __slots__ = ()
_fields = () def __new__(cls, *args, **kwargs):
'Create a new instance of the named tuple.'
return tuple.__new__(cls, *args) @classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
'Make a new named tuple object from a sequence or iterable.'
return new(cls, iterable) def __repr__(self):
return '' def _asdict(self):
'Return a new dict which maps field types to their values.'
return {} def _replace(self, **kwargs):
'Return a new named tuple object replacing specified fields with new values.'
return self def __getnewargs__(self):
return tuple(self) class object:
""" The most base type """
def __delattr__(self, name): # real signature unknown; restored from __doc__
""" x.__delattr__('name') <==> del x.name """
pass def __format__(self, *args, **kwargs): # real signature unknown
""" default object formatter """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self): # known special case of object.__init__
""" x.__init__(...) initializes x; see help(type(x)) for signature """
pass @staticmethod # known case of __new__
def __new__(cls, *more): # known special case of object.__new__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown
""" helper for pickle """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" helper for pickle """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __setattr__(self, name, value): # real signature unknown; restored from __doc__
""" x.__setattr__('name', value) <==> x.name = value """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
"""
__sizeof__() -> int
size of object in memory, in bytes
"""
return 0 def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass @classmethod # known case
def __subclasshook__(cls, subclass): # known special case of object.__subclasshook__
"""
Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).
"""
pass __class__ = None # (!) forward: type, real value is ''
__dict__ = {}
__doc__ = ''
__module__ = '' class basestring(object):
""" Type basestring cannot be instantiated; it is the base for str and unicode. """
def __init__(self, *args, **kwargs): # real signature unknown
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass class int(object):
"""
int(x=0) -> int or long
int(x, base=10) -> int or long Convert a number or string to an integer, or return 0 if no arguments
are given. If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead. If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base. The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4
"""
def bit_length(self): # real signature unknown; restored from __doc__
"""
int.bit_length() -> int Number of bits necessary to represent self in binary.
>>> bin(37)
'0b100101'
>>> (37).bit_length()
6
"""
return 0 def conjugate(self, *args, **kwargs): # real signature unknown
""" Returns self, the complex conjugate of any int. """
pass def __abs__(self): # real signature unknown; restored from __doc__
""" x.__abs__() <==> abs(x) """
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __coerce__(self, y): # real signature unknown; restored from __doc__
""" x.__coerce__(y) <==> coerce(x, y) """
pass def __divmod__(self, y): # real signature unknown; restored from __doc__
""" x.__divmod__(y) <==> divmod(x, y) """
pass def __div__(self, y): # real signature unknown; restored from __doc__
""" x.__div__(y) <==> x/y """
pass def __float__(self): # real signature unknown; restored from __doc__
""" x.__float__() <==> float(x) """
pass def __floordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__floordiv__(y) <==> x//y """
pass def __format__(self, *args, **kwargs): # real signature unknown
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __hex__(self): # real signature unknown; restored from __doc__
""" x.__hex__() <==> hex(x) """
pass def __index__(self): # real signature unknown; restored from __doc__
""" x[y:z] <==> x[y.__index__():z.__index__()] """
pass def __init__(self, x, base=10): # known special case of int.__init__
"""
int(x=0) -> int or long
int(x, base=10) -> int or long Convert a number or string to an integer, or return 0 if no arguments
are given. If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead. If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base. The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4
# (copied from class doc)
"""
pass def __int__(self): # real signature unknown; restored from __doc__
""" x.__int__() <==> int(x) """
pass def __invert__(self): # real signature unknown; restored from __doc__
""" x.__invert__() <==> ~x """
pass def __long__(self): # real signature unknown; restored from __doc__
""" x.__long__() <==> long(x) """
pass def __lshift__(self, y): # real signature unknown; restored from __doc__
""" x.__lshift__(y) <==> x<<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, y): # real signature unknown; restored from __doc__
""" x.__mul__(y) <==> x*y """
pass def __neg__(self): # real signature unknown; restored from __doc__
""" x.__neg__() <==> -x """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __nonzero__(self): # real signature unknown; restored from __doc__
""" x.__nonzero__() <==> x != 0 """
pass def __oct__(self): # real signature unknown; restored from __doc__
""" x.__oct__() <==> oct(x) """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __pos__(self): # real signature unknown; restored from __doc__
""" x.__pos__() <==> +x """
pass def __pow__(self, y, z=None): # real signature unknown; restored from __doc__
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass def __radd__(self, y): # real signature unknown; restored from __doc__
""" x.__radd__(y) <==> y+x """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __rdivmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass def __rdiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rdiv__(y) <==> y/x """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rfloordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rfloordiv__(y) <==> y//x """
pass def __rlshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rlshift__(y) <==> y<<x """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, y): # real signature unknown; restored from __doc__
""" x.__rmul__(y) <==> y*x """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass def __rrshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rrshift__(y) <==> y>>x """
pass def __rshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rshift__(y) <==> x>>y """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__
""" x.__rtruediv__(y) <==> y/x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __truediv__(self, y): # real signature unknown; restored from __doc__
""" x.__truediv__(y) <==> x/y """
pass def __trunc__(self, *args, **kwargs): # real signature unknown
""" Truncating an Integral returns itself. """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the real part of a complex number""" class bool(int):
"""
bool(x) -> bool Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
"""
def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __init__(self, x): # real signature unknown; restored from __doc__
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass class buffer(object):
"""
buffer(object [, offset[, size]]) Create a new buffer object which references the given object.
The buffer will reference a slice of the target object from the
start of the object (or at the specified offset). The slice will
extend to the end of the target object (or with the specified size).
"""
def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __delslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__delslice__(i, j) <==> del x[i:j] Use of negative indices is not supported.
"""
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j] Use of negative indices is not supported.
"""
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, p_object, offset=None, size=None): # real signature unknown; restored from __doc__
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass def __setslice__(self, i, j, y): # real signature unknown; restored from __doc__
"""
x.__setslice__(i, j, y) <==> x[i:j]=y Use of negative indices is not supported.
"""
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass class bytearray(object):
"""
bytearray(iterable_of_ints) -> bytearray.
bytearray(string, encoding[, errors]) -> bytearray.
bytearray(bytes_or_bytearray) -> mutable copy of bytes_or_bytearray.
bytearray(memory_view) -> bytearray. Construct a mutable bytearray object from:
- an iterable yielding integers in range(256)
- a text string encoded using the specified encoding
- a bytes or a bytearray object
- any object implementing the buffer API. bytearray(int) -> bytearray. Construct a zero-initialized bytearray of the given length.
"""
def append(self, p_int): # real signature unknown; restored from __doc__
"""
B.append(int) -> None Append a single item to the end of B.
"""
pass def capitalize(self): # real signature unknown; restored from __doc__
"""
B.capitalize() -> copy of B Return a copy of B with only its first character capitalized (ASCII)
and the rest lower-cased.
"""
pass def center(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
B.center(width[, fillchar]) -> copy of B Return B centered in a string of length width. Padding is
done using the specified fill character (default is a space).
"""
pass def count(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.count(sub [,start [,end]]) -> int Return the number of non-overlapping occurrences of subsection sub in
bytes B[start:end]. Optional arguments start and end are interpreted
as in slice notation.
"""
return 0 def decode(self, encoding=None, errors=None): # real signature unknown; restored from __doc__
"""
B.decode([encoding[, errors]]) -> unicode object. Decodes B using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that is
able to handle UnicodeDecodeErrors.
"""
return u"" def endswith(self, suffix, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.endswith(suffix [,start [,end]]) -> bool Return True if B ends with the specified suffix, False otherwise.
With optional start, test B beginning at that position.
With optional end, stop comparing B at that position.
suffix can also be a tuple of strings to try.
"""
return False def expandtabs(self, tabsize=None): # real signature unknown; restored from __doc__
"""
B.expandtabs([tabsize]) -> copy of B Return a copy of B where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
"""
pass def extend(self, iterable_int): # real signature unknown; restored from __doc__
"""
B.extend(iterable int) -> None Append all the elements from the iterator or sequence to the
end of B.
"""
pass def find(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.find(sub [,start [,end]]) -> int Return the lowest index in B where subsection sub is found,
such that sub is contained within B[start,end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 @classmethod # known case
def fromhex(cls, string): # real signature unknown; restored from __doc__
"""
bytearray.fromhex(string) -> bytearray Create a bytearray object from a string of hexadecimal numbers.
Spaces between two numbers are accepted.
Example: bytearray.fromhex('B9 01EF') -> bytearray(b'\xb9\x01\xef').
"""
return bytearray def index(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.index(sub [,start [,end]]) -> int Like B.find() but raise ValueError when the subsection is not found.
"""
return 0 def insert(self, index, p_int): # real signature unknown; restored from __doc__
"""
B.insert(index, int) -> None Insert a single item into the bytearray before the given index.
"""
pass def isalnum(self): # real signature unknown; restored from __doc__
"""
B.isalnum() -> bool Return True if all characters in B are alphanumeric
and there is at least one character in B, False otherwise.
"""
return False def isalpha(self): # real signature unknown; restored from __doc__
"""
B.isalpha() -> bool Return True if all characters in B are alphabetic
and there is at least one character in B, False otherwise.
"""
return False def isdigit(self): # real signature unknown; restored from __doc__
"""
B.isdigit() -> bool Return True if all characters in B are digits
and there is at least one character in B, False otherwise.
"""
return False def islower(self): # real signature unknown; restored from __doc__
"""
B.islower() -> bool Return True if all cased characters in B are lowercase and there is
at least one cased character in B, False otherwise.
"""
return False def isspace(self): # real signature unknown; restored from __doc__
"""
B.isspace() -> bool Return True if all characters in B are whitespace
and there is at least one character in B, False otherwise.
"""
return False def istitle(self): # real signature unknown; restored from __doc__
"""
B.istitle() -> bool Return True if B is a titlecased string and there is at least one
character in B, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return False
otherwise.
"""
return False def isupper(self): # real signature unknown; restored from __doc__
"""
B.isupper() -> bool Return True if all cased characters in B are uppercase and there is
at least one cased character in B, False otherwise.
"""
return False def join(self, iterable_of_bytes): # real signature unknown; restored from __doc__
"""
B.join(iterable_of_bytes) -> bytes Concatenates any number of bytearray objects, with B in between each pair.
"""
return "" def ljust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
B.ljust(width[, fillchar]) -> copy of B Return B left justified in a string of length width. Padding is
done using the specified fill character (default is a space).
"""
pass def lower(self): # real signature unknown; restored from __doc__
"""
B.lower() -> copy of B Return a copy of B with all ASCII characters converted to lowercase.
"""
pass def lstrip(self, bytes=None): # real signature unknown; restored from __doc__
"""
B.lstrip([bytes]) -> bytearray Strip leading bytes contained in the argument.
If the argument is omitted, strip leading ASCII whitespace.
"""
return bytearray def partition(self, sep): # real signature unknown; restored from __doc__
"""
B.partition(sep) -> (head, sep, tail) Searches for the separator sep in B, and returns the part before it,
the separator itself, and the part after it. If the separator is not
found, returns B and two empty bytearray objects.
"""
pass def pop(self, index=None): # real signature unknown; restored from __doc__
"""
B.pop([index]) -> int Remove and return a single item from B. If no index
argument is given, will pop the last value.
"""
return 0 def remove(self, p_int): # real signature unknown; restored from __doc__
"""
B.remove(int) -> None Remove the first occurrence of a value in B.
"""
pass def replace(self, old, new, count=None): # real signature unknown; restored from __doc__
"""
B.replace(old, new[, count]) -> bytes Return a copy of B with all occurrences of subsection
old replaced by new. If the optional argument count is
given, only the first count occurrences are replaced.
"""
return "" def reverse(self): # real signature unknown; restored from __doc__
"""
B.reverse() -> None Reverse the order of the values in B in place.
"""
pass def rfind(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.rfind(sub [,start [,end]]) -> int Return the highest index in B where subsection sub is found,
such that sub is contained within B[start,end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 def rindex(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.rindex(sub [,start [,end]]) -> int Like B.rfind() but raise ValueError when the subsection is not found.
"""
return 0 def rjust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
B.rjust(width[, fillchar]) -> copy of B Return B right justified in a string of length width. Padding is
done using the specified fill character (default is a space)
"""
pass def rpartition(self, sep): # real signature unknown; restored from __doc__
"""
B.rpartition(sep) -> (head, sep, tail) Searches for the separator sep in B, starting at the end of B,
and returns the part before it, the separator itself, and the
part after it. If the separator is not found, returns two empty
bytearray objects and B.
"""
pass def rsplit(self, sep, maxsplit=None): # real signature unknown; restored from __doc__
"""
B.rsplit(sep[, maxsplit]) -> list of bytearray Return a list of the sections in B, using sep as the delimiter,
starting at the end of B and working to the front.
If sep is not given, B is split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
If maxsplit is given, at most maxsplit splits are done.
"""
return [] def rstrip(self, bytes=None): # real signature unknown; restored from __doc__
"""
B.rstrip([bytes]) -> bytearray Strip trailing bytes contained in the argument.
If the argument is omitted, strip trailing ASCII whitespace.
"""
return bytearray def split(self, sep=None, maxsplit=None): # real signature unknown; restored from __doc__
"""
B.split([sep[, maxsplit]]) -> list of bytearray Return a list of the sections in B, using sep as the delimiter.
If sep is not given, B is split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
If maxsplit is given, at most maxsplit splits are done.
"""
return [] def splitlines(self, keepends=False): # real signature unknown; restored from __doc__
"""
B.splitlines(keepends=False) -> list of lines Return a list of the lines in B, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends
is given and true.
"""
return [] def startswith(self, prefix, start=None, end=None): # real signature unknown; restored from __doc__
"""
B.startswith(prefix [,start [,end]]) -> bool Return True if B starts with the specified prefix, False otherwise.
With optional start, test B beginning at that position.
With optional end, stop comparing B at that position.
prefix can also be a tuple of strings to try.
"""
return False def strip(self, bytes=None): # real signature unknown; restored from __doc__
"""
B.strip([bytes]) -> bytearray Strip leading and trailing bytes contained in the argument.
If the argument is omitted, strip ASCII whitespace.
"""
return bytearray def swapcase(self): # real signature unknown; restored from __doc__
"""
B.swapcase() -> copy of B Return a copy of B with uppercase ASCII characters converted
to lowercase ASCII and vice versa.
"""
pass def title(self): # real signature unknown; restored from __doc__
"""
B.title() -> copy of B Return a titlecased version of B, i.e. ASCII words start with uppercase
characters, all remaining cased characters have lowercase.
"""
pass def translate(self, table, deletechars=None): # real signature unknown; restored from __doc__
"""
B.translate(table[, deletechars]) -> bytearray Return a copy of B, where all characters occurring in the
optional argument deletechars are removed, and the remaining
characters have been mapped through the given translation
table, which must be a bytes object of length 256.
"""
return bytearray def upper(self): # real signature unknown; restored from __doc__
"""
B.upper() -> copy of B Return a copy of B with all ASCII characters converted to uppercase.
"""
pass def zfill(self, width): # real signature unknown; restored from __doc__
"""
B.zfill(width) -> copy of B Pad a numeric string B with zeros on the left, to fill a field
of the specified width. B is never truncated.
"""
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __alloc__(self): # real signature unknown; restored from __doc__
"""
B.__alloc__() -> int Returns the number of bytes actually allocated.
"""
return 0 def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iadd__(self, y): # real signature unknown; restored from __doc__
""" x.__iadd__(y) <==> x+=y """
pass def __imul__(self, y): # real signature unknown; restored from __doc__
""" x.__imul__(y) <==> x*=y """
pass def __init__(self, source=None, encoding=None, errors='strict'): # known special case of bytearray.__init__
"""
bytearray(iterable_of_ints) -> bytearray.
bytearray(string, encoding[, errors]) -> bytearray.
bytearray(bytes_or_bytearray) -> mutable copy of bytes_or_bytearray.
bytearray(memory_view) -> bytearray. Construct a mutable bytearray object from:
- an iterable yielding integers in range(256)
- a text string encoded using the specified encoding
- a bytes or a bytearray object
- any object implementing the buffer API. bytearray(int) -> bytearray. Construct a zero-initialized bytearray of the given length.
# (copied from class doc)
"""
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
"""
B.__sizeof__() -> int Returns the size of B in memory, in bytes
"""
return 0 def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass class str(basestring):
"""
str(object='') -> string Return a nice string representation of the object.
If the argument is a string, the return value is the same object.
"""
def capitalize(self): # real signature unknown; restored from __doc__
"""
S.capitalize() -> string Return a copy of the string S with only its first character
capitalized.
"""
return "" def center(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.center(width[, fillchar]) -> string Return S centered in a string of length width. Padding is
done using the specified fill character (default is a space)
"""
return "" def count(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.count(sub[, start[, end]]) -> int Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are interpreted
as in slice notation.
"""
return 0 def decode(self, encoding=None, errors=None): # real signature unknown; restored from __doc__
"""
S.decode([encoding[,errors]]) -> object Decodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that is
able to handle UnicodeDecodeErrors.
"""
return object() def encode(self, encoding=None, errors=None): # real signature unknown; restored from __doc__
"""
S.encode([encoding[,errors]]) -> object Encodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and
'xmlcharrefreplace' as well as any other name registered with
codecs.register_error that is able to handle UnicodeEncodeErrors.
"""
return object() def endswith(self, suffix, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.endswith(suffix[, start[, end]]) -> bool Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
"""
return False def expandtabs(self, tabsize=None): # real signature unknown; restored from __doc__
"""
S.expandtabs([tabsize]) -> string Return a copy of S where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
"""
return "" def find(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.find(sub [,start [,end]]) -> int Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 def format(self, *args, **kwargs): # known special case of str.format
"""
S.format(*args, **kwargs) -> string Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces ('{' and '}').
"""
pass def index(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.index(sub [,start [,end]]) -> int Like S.find() but raise ValueError when the substring is not found.
"""
return 0 def isalnum(self): # real signature unknown; restored from __doc__
"""
S.isalnum() -> bool Return True if all characters in S are alphanumeric
and there is at least one character in S, False otherwise.
"""
return False def isalpha(self): # real signature unknown; restored from __doc__
"""
S.isalpha() -> bool Return True if all characters in S are alphabetic
and there is at least one character in S, False otherwise.
"""
return False def isdigit(self): # real signature unknown; restored from __doc__
"""
S.isdigit() -> bool Return True if all characters in S are digits
and there is at least one character in S, False otherwise.
"""
return False def islower(self): # real signature unknown; restored from __doc__
"""
S.islower() -> bool Return True if all cased characters in S are lowercase and there is
at least one cased character in S, False otherwise.
"""
return False def isspace(self): # real signature unknown; restored from __doc__
"""
S.isspace() -> bool Return True if all characters in S are whitespace
and there is at least one character in S, False otherwise.
"""
return False def istitle(self): # real signature unknown; restored from __doc__
"""
S.istitle() -> bool Return True if S is a titlecased string and there is at least one
character in S, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return False
otherwise.
"""
return False def isupper(self): # real signature unknown; restored from __doc__
"""
S.isupper() -> bool Return True if all cased characters in S are uppercase and there is
at least one cased character in S, False otherwise.
"""
return False def join(self, iterable): # real signature unknown; restored from __doc__
"""
S.join(iterable) -> string Return a string which is the concatenation of the strings in the
iterable. The separator between elements is S.
"""
return "" def ljust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.ljust(width[, fillchar]) -> string Return S left-justified in a string of length width. Padding is
done using the specified fill character (default is a space).
"""
return "" def lower(self): # real signature unknown; restored from __doc__
"""
S.lower() -> string Return a copy of the string S converted to lowercase.
"""
return "" def lstrip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.lstrip([chars]) -> string or unicode Return a copy of the string S with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return "" def partition(self, sep): # real signature unknown; restored from __doc__
"""
S.partition(sep) -> (head, sep, tail) Search for the separator sep in S, and return the part before it,
the separator itself, and the part after it. If the separator is not
found, return S and two empty strings.
"""
pass def replace(self, old, new, count=None): # real signature unknown; restored from __doc__
"""
S.replace(old, new[, count]) -> string Return a copy of string S with all occurrences of substring
old replaced by new. If the optional argument count is
given, only the first count occurrences are replaced.
"""
return "" def rfind(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.rfind(sub [,start [,end]]) -> int Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 def rindex(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.rindex(sub [,start [,end]]) -> int Like S.rfind() but raise ValueError when the substring is not found.
"""
return 0 def rjust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.rjust(width[, fillchar]) -> string Return S right-justified in a string of length width. Padding is
done using the specified fill character (default is a space)
"""
return "" def rpartition(self, sep): # real signature unknown; restored from __doc__
"""
S.rpartition(sep) -> (head, sep, tail) Search for the separator sep in S, starting at the end of S, and return
the part before it, the separator itself, and the part after it. If the
separator is not found, return two empty strings and S.
"""
pass def rsplit(self, sep=None, maxsplit=None): # real signature unknown; restored from __doc__
"""
S.rsplit([sep [,maxsplit]]) -> list of strings Return a list of the words in the string S, using sep as the
delimiter string, starting at the end of the string and working
to the front. If maxsplit is given, at most maxsplit splits are
done. If sep is not specified or is None, any whitespace string
is a separator.
"""
return [] def rstrip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.rstrip([chars]) -> string or unicode Return a copy of the string S with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return "" def split(self, sep=None, maxsplit=None): # real signature unknown; restored from __doc__
"""
S.split([sep [,maxsplit]]) -> list of strings Return a list of the words in the string S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator and empty strings are removed
from the result.
"""
return [] def splitlines(self, keepends=False): # real signature unknown; restored from __doc__
"""
S.splitlines(keepends=False) -> list of strings Return a list of the lines in S, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends
is given and true.
"""
return [] def startswith(self, prefix, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.startswith(prefix[, start[, end]]) -> bool Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
"""
return False def strip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.strip([chars]) -> string or unicode Return a copy of the string S with leading and trailing
whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return "" def swapcase(self): # real signature unknown; restored from __doc__
"""
S.swapcase() -> string Return a copy of the string S with uppercase characters
converted to lowercase and vice versa.
"""
return "" def title(self): # real signature unknown; restored from __doc__
"""
S.title() -> string Return a titlecased version of S, i.e. words start with uppercase
characters, all remaining cased characters have lowercase.
"""
return "" def translate(self, table, deletechars=None): # real signature unknown; restored from __doc__
"""
S.translate(table [,deletechars]) -> string Return a copy of the string S, where all characters occurring
in the optional argument deletechars are removed, and the
remaining characters have been mapped through the given
translation table, which must be a string of length 256 or None.
If the table argument is None, no translation is applied and
the operation simply removes the characters in deletechars.
"""
return "" def upper(self): # real signature unknown; restored from __doc__
"""
S.upper() -> string Return a copy of the string S converted to uppercase.
"""
return "" def zfill(self, width): # real signature unknown; restored from __doc__
"""
S.zfill(width) -> string Pad a numeric string S with zeros on the left, to fill a field
of the specified width. The string S is never truncated.
"""
return "" def _formatter_field_name_split(self, *args, **kwargs): # real signature unknown
pass def _formatter_parser(self, *args, **kwargs): # real signature unknown
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __format__(self, format_spec): # real signature unknown; restored from __doc__
"""
S.__format__(format_spec) -> string Return a formatted version of S as described by format_spec.
"""
return "" def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j] Use of negative indices is not supported.
"""
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, string=''): # known special case of str.__init__
"""
str(object='') -> string Return a nice string representation of the object.
If the argument is a string, the return value is the same object.
# (copied from class doc)
"""
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass bytes = str class classmethod(object):
"""
classmethod(function) -> method Convert a function to be a class method. A class method receives the class as implicit first argument,
just like an instance method receives the instance.
To declare a class method, use this idiom: class C:
@classmethod
def f(cls, arg1, arg2, ...):
... It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()). The instance is ignored except for its class.
If a class method is called for a derived class, the derived class
object is passed as the implied first argument. Class methods are different than C++ or Java static methods.
If you want those, see the staticmethod builtin.
"""
def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __get__(self, obj, type=None): # real signature unknown; restored from __doc__
""" descr.__get__(obj[, type]) -> value """
pass def __init__(self, function): # real signature unknown; restored from __doc__
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass __func__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class complex(object):
"""
complex(real[, imag]) -> complex number Create a complex number from a real part and an optional imaginary part.
This is equivalent to (real + imag*1j) where imag defaults to 0.
"""
def conjugate(self): # real signature unknown; restored from __doc__
"""
complex.conjugate() -> complex Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
"""
return complex def __abs__(self): # real signature unknown; restored from __doc__
""" x.__abs__() <==> abs(x) """
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __coerce__(self, y): # real signature unknown; restored from __doc__
""" x.__coerce__(y) <==> coerce(x, y) """
pass def __divmod__(self, y): # real signature unknown; restored from __doc__
""" x.__divmod__(y) <==> divmod(x, y) """
pass def __div__(self, y): # real signature unknown; restored from __doc__
""" x.__div__(y) <==> x/y """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __float__(self): # real signature unknown; restored from __doc__
""" x.__float__() <==> float(x) """
pass def __floordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__floordiv__(y) <==> x//y """
pass def __format__(self): # real signature unknown; restored from __doc__
"""
complex.__format__() -> str Convert to a string according to format_spec.
"""
return "" def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, real, imag=None): # real signature unknown; restored from __doc__
pass def __int__(self): # real signature unknown; restored from __doc__
""" x.__int__() <==> int(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __long__(self): # real signature unknown; restored from __doc__
""" x.__long__() <==> long(x) """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, y): # real signature unknown; restored from __doc__
""" x.__mul__(y) <==> x*y """
pass def __neg__(self): # real signature unknown; restored from __doc__
""" x.__neg__() <==> -x """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __nonzero__(self): # real signature unknown; restored from __doc__
""" x.__nonzero__() <==> x != 0 """
pass def __pos__(self): # real signature unknown; restored from __doc__
""" x.__pos__() <==> +x """
pass def __pow__(self, y, z=None): # real signature unknown; restored from __doc__
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass def __radd__(self, y): # real signature unknown; restored from __doc__
""" x.__radd__(y) <==> y+x """
pass def __rdivmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass def __rdiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rdiv__(y) <==> y/x """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rfloordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rfloordiv__(y) <==> y//x """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, y): # real signature unknown; restored from __doc__
""" x.__rmul__(y) <==> y*x """
pass def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__
""" x.__rtruediv__(y) <==> y/x """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __truediv__(self, y): # real signature unknown; restored from __doc__
""" x.__truediv__(y) <==> x/y """
pass imag = property(lambda self: 0.0)
"""the imaginary part of a complex number :type: float
""" real = property(lambda self: 0.0)
"""the real part of a complex number :type: float
""" class dict(object):
"""
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
"""
def clear(self): # real signature unknown; restored from __doc__
""" D.clear() -> None. Remove all items from D. """
pass def copy(self): # real signature unknown; restored from __doc__
""" D.copy() -> a shallow copy of D """
pass @staticmethod # known case
def fromkeys(S, v=None): # real signature unknown; restored from __doc__
"""
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
"""
pass def get(self, k, d=None): # real signature unknown; restored from __doc__
""" D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None. """
pass def has_key(self, k): # real signature unknown; restored from __doc__
""" D.has_key(k) -> True if D has a key k, else False """
return False def items(self): # real signature unknown; restored from __doc__
""" D.items() -> list of D's (key, value) pairs, as 2-tuples """
return [] def iteritems(self): # real signature unknown; restored from __doc__
""" D.iteritems() -> an iterator over the (key, value) items of D """
pass def iterkeys(self): # real signature unknown; restored from __doc__
""" D.iterkeys() -> an iterator over the keys of D """
pass def itervalues(self): # real signature unknown; restored from __doc__
""" D.itervalues() -> an iterator over the values of D """
pass def keys(self): # real signature unknown; restored from __doc__
""" D.keys() -> list of D's keys """
return [] def pop(self, k, d=None): # real signature unknown; restored from __doc__
"""
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
"""
pass def popitem(self): # real signature unknown; restored from __doc__
"""
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
"""
pass def setdefault(self, k, d=None): # real signature unknown; restored from __doc__
""" D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """
pass def update(self, E=None, **F): # known special case of dict.update
"""
D.update([E, ]**F) -> None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
"""
pass def values(self): # real signature unknown; restored from __doc__
""" D.values() -> list of D's values """
return [] def viewitems(self): # real signature unknown; restored from __doc__
""" D.viewitems() -> a set-like object providing a view on D's items """
pass def viewkeys(self): # real signature unknown; restored from __doc__
""" D.viewkeys() -> a set-like object providing a view on D's keys """
pass def viewvalues(self): # real signature unknown; restored from __doc__
""" D.viewvalues() -> an object providing a view on D's values """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __contains__(self, k): # real signature unknown; restored from __doc__
""" D.__contains__(k) -> True if D has a key k, else False """
return False def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __init__(self, seq=None, **kwargs): # known special case of dict.__init__
"""
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
# (copied from class doc)
"""
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" D.__sizeof__() -> size of D in memory, in bytes """
pass __hash__ = None class enumerate(object):
"""
enumerate(iterable[, start]) -> iterator for index, value of iterable Return an enumerate object. iterable must be another object that supports
iteration. The enumerate object yields pairs containing a count (from
start, which defaults to zero) and a value yielded by the iterable argument.
enumerate is useful for obtaining an indexed list:
(0, seq[0]), (1, seq[1]), (2, seq[2]), ...
"""
def next(self): # real signature unknown; restored from __doc__
""" x.next() -> the next value, or raise StopIteration """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __init__(self, iterable, start=0): # known special case of enumerate.__init__
""" x.__init__(...) initializes x; see help(type(x)) for signature """
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass class file(object):
"""
file(name[, mode[, buffering]]) -> file object Open a file. The mode can be 'r', 'w' or 'a' for reading (default),
writing or appending. The file will be created if it doesn't exist
when opened for writing or appending; it will be truncated when
opened for writing. Add a 'b' to the mode for binary files.
Add a '+' to the mode to allow simultaneous reading and writing.
If the buffering argument is given, 0 means unbuffered, 1 means line
buffered, and larger numbers specify the buffer size. The preferred way
to open a file is with the builtin open() function.
Add a 'U' to mode to open the file for input with universal newline
support. Any line ending in the input file will be seen as a '\n'
in Python. Also, a file so opened gains the attribute 'newlines';
the value for this attribute is one of None (no newline read yet),
'\r', '\n', '\r\n' or a tuple containing all the newline types seen. 'U' cannot be combined with 'w' or '+' mode.
"""
def close(self): # real signature unknown; restored from __doc__
"""
close() -> None or (perhaps) an integer. Close the file. Sets data attribute .closed to True. A closed file cannot be used for
further I/O operations. close() may be called more than once without
error. Some kinds of file objects (for example, opened by popen())
may return an exit status upon closing.
"""
pass def fileno(self): # real signature unknown; restored from __doc__
"""
fileno() -> integer "file descriptor". This is needed for lower-level file interfaces, such os.read().
"""
return 0 def flush(self): # real signature unknown; restored from __doc__
""" flush() -> None. Flush the internal I/O buffer. """
pass def isatty(self): # real signature unknown; restored from __doc__
""" isatty() -> true or false. True if the file is connected to a tty device. """
return False def next(self): # real signature unknown; restored from __doc__
""" x.next() -> the next value, or raise StopIteration """
pass def read(self, size=None): # real signature unknown; restored from __doc__
"""
read([size]) -> read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached.
Notice that when in non-blocking mode, less data than what was requested
may be returned, even if no size parameter was given.
"""
pass def readinto(self): # real signature unknown; restored from __doc__
""" readinto() -> Undocumented. Don't use this; it may go away. """
pass def readline(self, size=None): # real signature unknown; restored from __doc__
"""
readline([size]) -> next line from the file, as a string. Retain newline. A non-negative size argument limits the maximum
number of bytes to return (an incomplete line may be returned then).
Return an empty string at EOF.
"""
pass def readlines(self, size=None): # real signature unknown; restored from __doc__
"""
readlines([size]) -> list of strings, each a line from the file. Call readline() repeatedly and return a list of the lines so read.
The optional size argument, if given, is an approximate bound on the
total number of bytes in the lines returned.
"""
return [] def seek(self, offset, whence=None): # real signature unknown; restored from __doc__
"""
seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count. Optional argument whence defaults to
0 (offset from start of file, offset should be >= 0); other values are 1
(move relative to current position, positive or negative), and 2 (move
relative to end of file, usually negative, although many platforms allow
seeking beyond the end of a file). If the file is opened in text mode,
only offsets returned by tell() are legal. Use of other offsets causes
undefined behavior.
Note that not all file objects are seekable.
"""
pass def tell(self): # real signature unknown; restored from __doc__
""" tell() -> current file position, an integer (may be a long integer). """
pass def truncate(self, size=None): # real signature unknown; restored from __doc__
"""
truncate([size]) -> None. Truncate the file to at most size bytes. Size defaults to the current file position, as returned by tell().
"""
pass def write(self, p_str): # real signature unknown; restored from __doc__
"""
write(str) -> None. Write string str to file. Note that due to buffering, flush() or close() may be needed before
the file on disk reflects the data written.
"""
pass def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__
"""
writelines(sequence_of_strings) -> None. Write the strings to the file. Note that newlines are not added. The sequence can be any iterable object
producing strings. This is equivalent to calling write() for each string.
"""
pass def xreadlines(self): # real signature unknown; restored from __doc__
"""
xreadlines() -> returns self. For backward compatibility. File objects now include the performance
optimizations previously implemented in the xreadlines module.
"""
pass def __delattr__(self, name): # real signature unknown; restored from __doc__
""" x.__delattr__('name') <==> del x.name """
pass def __enter__(self): # real signature unknown; restored from __doc__
""" __enter__() -> self. """
return self def __exit__(self, *excinfo): # real signature unknown; restored from __doc__
""" __exit__(*excinfo) -> None. Closes the file. """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __init__(self, name, mode=None, buffering=None): # real signature unknown; restored from __doc__
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __setattr__(self, name, value): # real signature unknown; restored from __doc__
""" x.__setattr__('name', value) <==> x.name = value """
pass closed = property(lambda self: True)
"""True if the file is closed :type: bool
""" encoding = property(lambda self: '')
"""file encoding :type: string
""" errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""Unicode error handler""" mode = property(lambda self: '')
"""file mode ('r', 'U', 'w', 'a', possibly with 'b' or '+' added) :type: string
""" name = property(lambda self: '')
"""file name :type: string
""" newlines = property(lambda self: '')
"""end-of-line convention used in this file :type: string
""" softspace = property(lambda self: True)
"""flag indicating that a space needs to be printed; used by print :type: bool
""" class float(object):
"""
float(x) -> floating point number Convert a string or number to a floating point number, if possible.
"""
def as_integer_ratio(self): # real signature unknown; restored from __doc__
"""
float.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original
float and with a positive denominator.
Raise OverflowError on infinities and a ValueError on NaNs. >>> (10.0).as_integer_ratio()
(10, 1)
>>> (0.0).as_integer_ratio()
(0, 1)
>>> (-.25).as_integer_ratio()
(-1, 4)
"""
pass def conjugate(self, *args, **kwargs): # real signature unknown
""" Return self, the complex conjugate of any float. """
pass @staticmethod # known case
def fromhex(string): # real signature unknown; restored from __doc__
"""
float.fromhex(string) -> float Create a floating-point number from a hexadecimal string.
>>> float.fromhex('0x1.ffffp10')
2047.984375
>>> float.fromhex('-0x1p-1074')
-4.9406564584124654e-324
"""
return 0.0 def hex(self): # real signature unknown; restored from __doc__
"""
float.hex() -> string Return a hexadecimal representation of a floating-point number.
>>> (-0.1).hex()
'-0x1.999999999999ap-4'
>>> 3.14159.hex()
'0x1.921f9f01b866ep+1'
"""
return "" def is_integer(self, *args, **kwargs): # real signature unknown
""" Return True if the float is an integer. """
pass def __abs__(self): # real signature unknown; restored from __doc__
""" x.__abs__() <==> abs(x) """
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __coerce__(self, y): # real signature unknown; restored from __doc__
""" x.__coerce__(y) <==> coerce(x, y) """
pass def __divmod__(self, y): # real signature unknown; restored from __doc__
""" x.__divmod__(y) <==> divmod(x, y) """
pass def __div__(self, y): # real signature unknown; restored from __doc__
""" x.__div__(y) <==> x/y """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __float__(self): # real signature unknown; restored from __doc__
""" x.__float__() <==> float(x) """
pass def __floordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__floordiv__(y) <==> x//y """
pass def __format__(self, format_spec): # real signature unknown; restored from __doc__
"""
float.__format__(format_spec) -> string Formats the float according to format_spec.
"""
return "" def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getformat__(self, typestr): # real signature unknown; restored from __doc__
"""
float.__getformat__(typestr) -> string You probably don't want to use this function. It exists mainly to be
used in Python's test suite. typestr must be 'double' or 'float'. This function returns whichever of
'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the
format of floating point numbers used by the C type named by typestr.
"""
return "" def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, x): # real signature unknown; restored from __doc__
pass def __int__(self): # real signature unknown; restored from __doc__
""" x.__int__() <==> int(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __long__(self): # real signature unknown; restored from __doc__
""" x.__long__() <==> long(x) """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, y): # real signature unknown; restored from __doc__
""" x.__mul__(y) <==> x*y """
pass def __neg__(self): # real signature unknown; restored from __doc__
""" x.__neg__() <==> -x """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __nonzero__(self): # real signature unknown; restored from __doc__
""" x.__nonzero__() <==> x != 0 """
pass def __pos__(self): # real signature unknown; restored from __doc__
""" x.__pos__() <==> +x """
pass def __pow__(self, y, z=None): # real signature unknown; restored from __doc__
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass def __radd__(self, y): # real signature unknown; restored from __doc__
""" x.__radd__(y) <==> y+x """
pass def __rdivmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass def __rdiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rdiv__(y) <==> y/x """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rfloordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rfloordiv__(y) <==> y//x """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, y): # real signature unknown; restored from __doc__
""" x.__rmul__(y) <==> y*x """
pass def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__
""" x.__rtruediv__(y) <==> y/x """
pass def __setformat__(self, typestr, fmt): # real signature unknown; restored from __doc__
"""
float.__setformat__(typestr, fmt) -> None You probably don't want to use this function. It exists mainly to be
used in Python's test suite. typestr must be 'double' or 'float'. fmt must be one of 'unknown',
'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be
one of the latter two if it appears to match the underlying C reality. Override the automatic determination of C-level floating point type.
This affects how floats are converted to and from binary strings.
"""
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __truediv__(self, y): # real signature unknown; restored from __doc__
""" x.__truediv__(y) <==> x/y """
pass def __trunc__(self, *args, **kwargs): # real signature unknown
""" Return the Integral closest to x between 0 and x. """
pass imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the imaginary part of a complex number""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the real part of a complex number""" class frozenset(object):
"""
frozenset() -> empty frozenset object
frozenset(iterable) -> frozenset object Build an immutable unordered collection of unique elements.
"""
def copy(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a set. """
pass def difference(self, *args, **kwargs): # real signature unknown
"""
Return the difference of two or more sets as a new set. (i.e. all elements that are in this set but not the others.)
"""
pass def intersection(self, *args, **kwargs): # real signature unknown
"""
Return the intersection of two or more sets as a new set. (i.e. elements that are common to all of the sets.)
"""
pass def isdisjoint(self, *args, **kwargs): # real signature unknown
""" Return True if two sets have a null intersection. """
pass def issubset(self, *args, **kwargs): # real signature unknown
""" Report whether another set contains this set. """
pass def issuperset(self, *args, **kwargs): # real signature unknown
""" Report whether this set contains another set. """
pass def symmetric_difference(self, *args, **kwargs): # real signature unknown
"""
Return the symmetric difference of two sets as a new set. (i.e. all elements that are in exactly one of the sets.)
"""
pass def union(self, *args, **kwargs): # real signature unknown
"""
Return the union of sets as a new set. (i.e. all elements that are in either set.)
"""
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x. """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, seq=()): # known special case of frozenset.__init__
""" x.__init__(...) initializes x; see help(type(x)) for signature """
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass class list(object):
"""
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
"""
def append(self, p_object): # real signature unknown; restored from __doc__
""" L.append(object) -- append object to end """
pass def count(self, value): # real signature unknown; restored from __doc__
""" L.count(value) -> integer -- return number of occurrences of value """
return 0 def extend(self, iterable): # real signature unknown; restored from __doc__
""" L.extend(iterable) -- extend list by appending elements from the iterable """
pass def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
"""
L.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
"""
return 0 def insert(self, index, p_object): # real signature unknown; restored from __doc__
""" L.insert(index, object) -- insert object before index """
pass def pop(self, index=None): # real signature unknown; restored from __doc__
"""
L.pop([index]) -> item -- remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.
"""
pass def remove(self, value): # real signature unknown; restored from __doc__
"""
L.remove(value) -- remove first occurrence of value.
Raises ValueError if the value is not present.
"""
pass def reverse(self): # real signature unknown; restored from __doc__
""" L.reverse() -- reverse *IN PLACE* """
pass def sort(self, cmp=None, key=None, reverse=False): # real signature unknown; restored from __doc__
"""
L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
cmp(x, y) -> -1, 0, 1
"""
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __delslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__delslice__(i, j) <==> del x[i:j] Use of negative indices is not supported.
"""
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j] Use of negative indices is not supported.
"""
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iadd__(self, y): # real signature unknown; restored from __doc__
""" x.__iadd__(y) <==> x+=y """
pass def __imul__(self, y): # real signature unknown; restored from __doc__
""" x.__imul__(y) <==> x*=y """
pass def __init__(self, seq=()): # known special case of list.__init__
"""
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
# (copied from class doc)
"""
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __reversed__(self): # real signature unknown; restored from __doc__
""" L.__reversed__() -- return a reverse iterator over the list """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass def __setslice__(self, i, j, y): # real signature unknown; restored from __doc__
"""
x.__setslice__(i, j, y) <==> x[i:j]=y Use of negative indices is not supported.
"""
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" L.__sizeof__() -- size of L in memory, in bytes """
pass __hash__ = None class long(object):
"""
long(x=0) -> long
long(x, base=10) -> long Convert a number or string to a long integer, or return 0L if no arguments
are given. If x is floating point, the conversion truncates towards zero. If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base. The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4L
"""
def bit_length(self): # real signature unknown; restored from __doc__
"""
long.bit_length() -> int or long Number of bits necessary to represent self in binary.
>>> bin(37L)
'0b100101'
>>> (37L).bit_length()
6
"""
return 0 def conjugate(self, *args, **kwargs): # real signature unknown
""" Returns self, the complex conjugate of any long. """
pass def __abs__(self): # real signature unknown; restored from __doc__
""" x.__abs__() <==> abs(x) """
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __coerce__(self, y): # real signature unknown; restored from __doc__
""" x.__coerce__(y) <==> coerce(x, y) """
pass def __divmod__(self, y): # real signature unknown; restored from __doc__
""" x.__divmod__(y) <==> divmod(x, y) """
pass def __div__(self, y): # real signature unknown; restored from __doc__
""" x.__div__(y) <==> x/y """
pass def __float__(self): # real signature unknown; restored from __doc__
""" x.__float__() <==> float(x) """
pass def __floordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__floordiv__(y) <==> x//y """
pass def __format__(self, *args, **kwargs): # real signature unknown
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __hex__(self): # real signature unknown; restored from __doc__
""" x.__hex__() <==> hex(x) """
pass def __index__(self): # real signature unknown; restored from __doc__
""" x[y:z] <==> x[y.__index__():z.__index__()] """
pass def __init__(self, x=0): # real signature unknown; restored from __doc__
pass def __int__(self): # real signature unknown; restored from __doc__
""" x.__int__() <==> int(x) """
pass def __invert__(self): # real signature unknown; restored from __doc__
""" x.__invert__() <==> ~x """
pass def __long__(self): # real signature unknown; restored from __doc__
""" x.__long__() <==> long(x) """
pass def __lshift__(self, y): # real signature unknown; restored from __doc__
""" x.__lshift__(y) <==> x<<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, y): # real signature unknown; restored from __doc__
""" x.__mul__(y) <==> x*y """
pass def __neg__(self): # real signature unknown; restored from __doc__
""" x.__neg__() <==> -x """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __nonzero__(self): # real signature unknown; restored from __doc__
""" x.__nonzero__() <==> x != 0 """
pass def __oct__(self): # real signature unknown; restored from __doc__
""" x.__oct__() <==> oct(x) """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __pos__(self): # real signature unknown; restored from __doc__
""" x.__pos__() <==> +x """
pass def __pow__(self, y, z=None): # real signature unknown; restored from __doc__
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass def __radd__(self, y): # real signature unknown; restored from __doc__
""" x.__radd__(y) <==> y+x """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __rdivmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass def __rdiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rdiv__(y) <==> y/x """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rfloordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rfloordiv__(y) <==> y//x """
pass def __rlshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rlshift__(y) <==> y<<x """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, y): # real signature unknown; restored from __doc__
""" x.__rmul__(y) <==> y*x """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass def __rrshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rrshift__(y) <==> y>>x """
pass def __rshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rshift__(y) <==> x>>y """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__
""" x.__rtruediv__(y) <==> y/x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __sizeof__(self, *args, **kwargs): # real signature unknown
""" Returns size in memory, in bytes """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __truediv__(self, y): # real signature unknown; restored from __doc__
""" x.__truediv__(y) <==> x/y """
pass def __trunc__(self, *args, **kwargs): # real signature unknown
""" Truncating an Integral returns itself. """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""the real part of a complex number""" class memoryview(object):
"""
memoryview(object) Create a new memoryview object which references the given object.
"""
def tobytes(self, *args, **kwargs): # real signature unknown
pass def tolist(self, *args, **kwargs): # real signature unknown
pass def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __init__(self, p_object): # real signature unknown; restored from __doc__
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass format = property(lambda self: object(), lambda self, v: None, lambda self: None) # default itemsize = property(lambda self: object(), lambda self, v: None, lambda self: None) # default ndim = property(lambda self: object(), lambda self, v: None, lambda self: None) # default readonly = property(lambda self: object(), lambda self, v: None, lambda self: None) # default shape = property(lambda self: object(), lambda self, v: None, lambda self: None) # default strides = property(lambda self: object(), lambda self, v: None, lambda self: None) # default suboffsets = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class property(object):
"""
property(fget=None, fset=None, fdel=None, doc=None) -> property attribute fget is a function to be used for getting an attribute value, and likewise
fset is a function for setting, and fdel a function for del'ing, an
attribute. Typical use is to define a managed attribute x: class C(object):
def getx(self): return self._x
def setx(self, value): self._x = value
def delx(self): del self._x
x = property(getx, setx, delx, "I'm the 'x' property.") Decorators make defining new properties or modifying existing ones easy: class C(object):
@property
def x(self):
"I am the 'x' property."
return self._x
@x.setter
def x(self, value):
self._x = value
@x.deleter
def x(self):
del self._x
"""
def deleter(self, *args, **kwargs): # real signature unknown
""" Descriptor to change the deleter on a property. """
pass def getter(self, *args, **kwargs): # real signature unknown
""" Descriptor to change the getter on a property. """
pass def setter(self, *args, **kwargs): # real signature unknown
""" Descriptor to change the setter on a property. """
pass def __delete__(self, obj): # real signature unknown; restored from __doc__
""" descr.__delete__(obj) """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __get__(self, obj, type=None): # real signature unknown; restored from __doc__
""" descr.__get__(obj[, type]) -> value """
pass def __init__(self, fget=None, fset=None, fdel=None, doc=None): # known special case of property.__init__
"""
property(fget=None, fset=None, fdel=None, doc=None) -> property attribute fget is a function to be used for getting an attribute value, and likewise
fset is a function for setting, and fdel a function for del'ing, an
attribute. Typical use is to define a managed attribute x: class C(object):
def getx(self): return self._x
def setx(self, value): self._x = value
def delx(self): del self._x
x = property(getx, setx, delx, "I'm the 'x' property.") Decorators make defining new properties or modifying existing ones easy: class C(object):
@property
def x(self):
"I am the 'x' property."
return self._x
@x.setter
def x(self, value):
self._x = value
@x.deleter
def x(self):
del self._x # (copied from class doc)
"""
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __set__(self, obj, value): # real signature unknown; restored from __doc__
""" descr.__set__(obj, value) """
pass fdel = property(lambda self: object(), lambda self, v: None, lambda self: None) # default fget = property(lambda self: object(), lambda self, v: None, lambda self: None) # default fset = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class reversed(object):
"""
reversed(sequence) -> reverse iterator over values of the sequence Return a reverse iterator
"""
def next(self): # real signature unknown; restored from __doc__
""" x.next() -> the next value, or raise StopIteration """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __init__(self, sequence): # real signature unknown; restored from __doc__
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __length_hint__(self, *args, **kwargs): # real signature unknown
""" Private method returning an estimate of len(list(it)). """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass class set(object):
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
"""
def add(self, *args, **kwargs): # real signature unknown
"""
Add an element to a set. This has no effect if the element is already present.
"""
pass def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from this set. """
pass def copy(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a set. """
pass def difference(self, *args, **kwargs): # real signature unknown
"""
Return the difference of two or more sets as a new set. (i.e. all elements that are in this set but not the others.)
"""
pass def difference_update(self, *args, **kwargs): # real signature unknown
""" Remove all elements of another set from this set. """
pass def discard(self, *args, **kwargs): # real signature unknown
"""
Remove an element from a set if it is a member. If the element is not a member, do nothing.
"""
pass def intersection(self, *args, **kwargs): # real signature unknown
"""
Return the intersection of two or more sets as a new set. (i.e. elements that are common to all of the sets.)
"""
pass def intersection_update(self, *args, **kwargs): # real signature unknown
""" Update a set with the intersection of itself and another. """
pass def isdisjoint(self, *args, **kwargs): # real signature unknown
""" Return True if two sets have a null intersection. """
pass def issubset(self, *args, **kwargs): # real signature unknown
""" Report whether another set contains this set. """
pass def issuperset(self, *args, **kwargs): # real signature unknown
""" Report whether this set contains another set. """
pass def pop(self, *args, **kwargs): # real signature unknown
"""
Remove and return an arbitrary set element.
Raises KeyError if the set is empty.
"""
pass def remove(self, *args, **kwargs): # real signature unknown
"""
Remove an element from a set; it must be a member. If the element is not a member, raise a KeyError.
"""
pass def symmetric_difference(self, *args, **kwargs): # real signature unknown
"""
Return the symmetric difference of two sets as a new set. (i.e. all elements that are in exactly one of the sets.)
"""
pass def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
""" Update a set with the symmetric difference of itself and another. """
pass def union(self, *args, **kwargs): # real signature unknown
"""
Return the union of sets as a new set. (i.e. all elements that are in either set.)
"""
pass def update(self, *args, **kwargs): # real signature unknown
""" Update a set with the union of itself and others. """
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x. """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iand__(self, y): # real signature unknown; restored from __doc__
""" x.__iand__(y) <==> x&=y """
pass def __init__(self, seq=()): # known special case of set.__init__
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
# (copied from class doc)
"""
pass def __ior__(self, y): # real signature unknown; restored from __doc__
""" x.__ior__(y) <==> x|=y """
pass def __isub__(self, y): # real signature unknown; restored from __doc__
""" x.__isub__(y) <==> x-=y """
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __ixor__(self, y): # real signature unknown; restored from __doc__
""" x.__ixor__(y) <==> x^=y """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass __hash__ = None class slice(object):
"""
slice(stop)
slice(start, stop[, step]) Create a slice object. This is used for extended slicing (e.g. a[0:10:2]).
"""
def indices(self, len): # real signature unknown; restored from __doc__
"""
S.indices(len) -> (start, stop, stride) Assuming a sequence of length len, calculate the start and stop
indices, and the stride length of the extended slice described by
S. Out of bounds indices are clipped in a manner consistent with the
handling of normal slices.
"""
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, stop): # real signature unknown; restored from __doc__
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass start = property(lambda self: 0)
""":type: int""" step = property(lambda self: 0)
""":type: int""" stop = property(lambda self: 0)
""":type: int""" class staticmethod(object):
"""
staticmethod(function) -> method Convert a function to be a static method. A static method does not receive an implicit first argument.
To declare a static method, use this idiom: class C:
@staticmethod
def f(arg1, arg2, ...):
... It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()). The instance is ignored except for its class. Static methods in Python are similar to those found in Java or C++.
For a more advanced concept, see the classmethod builtin.
"""
def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __get__(self, obj, type=None): # real signature unknown; restored from __doc__
""" descr.__get__(obj[, type]) -> value """
pass def __init__(self, function): # real signature unknown; restored from __doc__
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass __func__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class super(object):
"""
super(type, obj) -> bound super object; requires isinstance(obj, type)
super(type) -> unbound super object
super(type, type2) -> bound super object; requires issubclass(type2, type)
Typical use to call a cooperative superclass method:
class C(B):
def meth(self, arg):
super(C, self).meth(arg)
"""
def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __get__(self, obj, type=None): # real signature unknown; restored from __doc__
""" descr.__get__(obj[, type]) -> value """
pass def __init__(self, type1, type2=None): # known special case of super.__init__
"""
super(type, obj) -> bound super object; requires isinstance(obj, type)
super(type) -> unbound super object
super(type, type2) -> bound super object; requires issubclass(type2, type)
Typical use to call a cooperative superclass method:
class C(B):
def meth(self, arg):
super(C, self).meth(arg)
# (copied from class doc)
"""
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass __self_class__ = property(lambda self: type(object))
"""the type of the instance invoking super(); may be None :type: type
""" __self__ = property(lambda self: type(object))
"""the instance invoking super(); may be None :type: type
""" __thisclass__ = property(lambda self: type(object))
"""the class invoking super() :type: type
""" class tuple(object):
"""
tuple() -> empty tuple
tuple(iterable) -> tuple initialized from iterable's items If the argument is a tuple, the return value is the same object.
"""
def count(self, value): # real signature unknown; restored from __doc__
""" T.count(value) -> integer -- return number of occurrences of value """
return 0 def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
"""
T.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
"""
return 0 def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j] Use of negative indices is not supported.
"""
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, seq=()): # known special case of tuple.__init__
"""
tuple() -> empty tuple
tuple(iterable) -> tuple initialized from iterable's items If the argument is a tuple, the return value is the same object.
# (copied from class doc)
"""
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass class type(object):
"""
type(object) -> the object's type
type(name, bases, dict) -> a new type
"""
def mro(self): # real signature unknown; restored from __doc__
"""
mro() -> list
return a type's method resolution order
"""
return [] def __call__(self, *more): # real signature unknown; restored from __doc__
""" x.__call__(...) <==> x(...) """
pass def __delattr__(self, name): # real signature unknown; restored from __doc__
""" x.__delattr__('name') <==> del x.name """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(cls, what, bases=None, dict=None): # known special case of type.__init__
"""
type(object) -> the object's type
type(name, bases, dict) -> a new type
# (copied from class doc)
"""
pass def __instancecheck__(self): # real signature unknown; restored from __doc__
"""
__instancecheck__() -> bool
check if an object is an instance
"""
return False def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __setattr__(self, name, value): # real signature unknown; restored from __doc__
""" x.__setattr__('name', value) <==> x.name = value """
pass def __subclasscheck__(self): # real signature unknown; restored from __doc__
"""
__subclasscheck__() -> bool
check if a class is a subclass
"""
return False def __subclasses__(self): # real signature unknown; restored from __doc__
""" __subclasses__() -> list of immediate subclasses """
return [] __abstractmethods__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __bases__ = (
object,
)
__base__ = object
__basicsize__ = 872
__dictoffset__ = 264
__dict__ = None # (!) real value is ''
__flags__ = 2148423147
__itemsize__ = 40
__mro__ = (
None, # (!) forward: type, real value is ''
object,
)
__name__ = 'type'
__weakrefoffset__ = 368 class unicode(basestring):
"""
unicode(object='') -> unicode object
unicode(string[, encoding[, errors]]) -> unicode object Create a new Unicode object from the given encoded string.
encoding defaults to the current default string encoding.
errors can be 'strict', 'replace' or 'ignore' and defaults to 'strict'.
"""
def capitalize(self): # real signature unknown; restored from __doc__
"""
S.capitalize() -> unicode Return a capitalized version of S, i.e. make the first character
have upper case and the rest lower case.
"""
return u"" def center(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.center(width[, fillchar]) -> unicode Return S centered in a Unicode string of length width. Padding is
done using the specified fill character (default is a space)
"""
return u"" def count(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.count(sub[, start[, end]]) -> int Return the number of non-overlapping occurrences of substring sub in
Unicode string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.
"""
return 0 def decode(self, encoding=None, errors=None): # real signature unknown; restored from __doc__
"""
S.decode([encoding[,errors]]) -> string or unicode Decodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that is
able to handle UnicodeDecodeErrors.
"""
return "" def encode(self, encoding=None, errors=None): # real signature unknown; restored from __doc__
"""
S.encode([encoding[,errors]]) -> string or unicode Encodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and
'xmlcharrefreplace' as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.
"""
return "" def endswith(self, suffix, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.endswith(suffix[, start[, end]]) -> bool Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
"""
return False def expandtabs(self, tabsize=None): # real signature unknown; restored from __doc__
"""
S.expandtabs([tabsize]) -> unicode Return a copy of S where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
"""
return u"" def find(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.find(sub [,start [,end]]) -> int Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 def format(self, *args, **kwargs): # known special case of unicode.format
"""
S.format(*args, **kwargs) -> unicode Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces ('{' and '}').
"""
pass def index(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.index(sub [,start [,end]]) -> int Like S.find() but raise ValueError when the substring is not found.
"""
return 0 def isalnum(self): # real signature unknown; restored from __doc__
"""
S.isalnum() -> bool Return True if all characters in S are alphanumeric
and there is at least one character in S, False otherwise.
"""
return False def isalpha(self): # real signature unknown; restored from __doc__
"""
S.isalpha() -> bool Return True if all characters in S are alphabetic
and there is at least one character in S, False otherwise.
"""
return False def isdecimal(self): # real signature unknown; restored from __doc__
"""
S.isdecimal() -> bool Return True if there are only decimal characters in S,
False otherwise.
"""
return False def isdigit(self): # real signature unknown; restored from __doc__
"""
S.isdigit() -> bool Return True if all characters in S are digits
and there is at least one character in S, False otherwise.
"""
return False def islower(self): # real signature unknown; restored from __doc__
"""
S.islower() -> bool Return True if all cased characters in S are lowercase and there is
at least one cased character in S, False otherwise.
"""
return False def isnumeric(self): # real signature unknown; restored from __doc__
"""
S.isnumeric() -> bool Return True if there are only numeric characters in S,
False otherwise.
"""
return False def isspace(self): # real signature unknown; restored from __doc__
"""
S.isspace() -> bool Return True if all characters in S are whitespace
and there is at least one character in S, False otherwise.
"""
return False def istitle(self): # real signature unknown; restored from __doc__
"""
S.istitle() -> bool Return True if S is a titlecased string and there is at least one
character in S, i.e. upper- and titlecase characters may only
follow uncased characters and lowercase characters only cased ones.
Return False otherwise.
"""
return False def isupper(self): # real signature unknown; restored from __doc__
"""
S.isupper() -> bool Return True if all cased characters in S are uppercase and there is
at least one cased character in S, False otherwise.
"""
return False def join(self, iterable): # real signature unknown; restored from __doc__
"""
S.join(iterable) -> unicode Return a string which is the concatenation of the strings in the
iterable. The separator between elements is S.
"""
return u"" def ljust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.ljust(width[, fillchar]) -> int Return S left-justified in a Unicode string of length width. Padding is
done using the specified fill character (default is a space).
"""
return 0 def lower(self): # real signature unknown; restored from __doc__
"""
S.lower() -> unicode Return a copy of the string S converted to lowercase.
"""
return u"" def lstrip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.lstrip([chars]) -> unicode Return a copy of the string S with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is a str, it will be converted to unicode before stripping
"""
return u"" def partition(self, sep): # real signature unknown; restored from __doc__
"""
S.partition(sep) -> (head, sep, tail) Search for the separator sep in S, and return the part before it,
the separator itself, and the part after it. If the separator is not
found, return S and two empty strings.
"""
pass def replace(self, old, new, count=None): # real signature unknown; restored from __doc__
"""
S.replace(old, new[, count]) -> unicode Return a copy of S with all occurrences of substring
old replaced by new. If the optional argument count is
given, only the first count occurrences are replaced.
"""
return u"" def rfind(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.rfind(sub [,start [,end]]) -> int Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 on failure.
"""
return 0 def rindex(self, sub, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.rindex(sub [,start [,end]]) -> int Like S.rfind() but raise ValueError when the substring is not found.
"""
return 0 def rjust(self, width, fillchar=None): # real signature unknown; restored from __doc__
"""
S.rjust(width[, fillchar]) -> unicode Return S right-justified in a Unicode string of length width. Padding is
done using the specified fill character (default is a space).
"""
return u"" def rpartition(self, sep): # real signature unknown; restored from __doc__
"""
S.rpartition(sep) -> (head, sep, tail) Search for the separator sep in S, starting at the end of S, and return
the part before it, the separator itself, and the part after it. If the
separator is not found, return two empty strings and S.
"""
pass def rsplit(self, sep=None, maxsplit=None): # real signature unknown; restored from __doc__
"""
S.rsplit([sep [,maxsplit]]) -> list of strings Return a list of the words in S, using sep as the
delimiter string, starting at the end of the string and
working to the front. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified, any whitespace string
is a separator.
"""
return [] def rstrip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.rstrip([chars]) -> unicode Return a copy of the string S with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is a str, it will be converted to unicode before stripping
"""
return u"" def split(self, sep=None, maxsplit=None): # real signature unknown; restored from __doc__
"""
S.split([sep [,maxsplit]]) -> list of strings Return a list of the words in S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator and empty strings are
removed from the result.
"""
return [] def splitlines(self, keepends=False): # real signature unknown; restored from __doc__
"""
S.splitlines(keepends=False) -> list of strings Return a list of the lines in S, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends
is given and true.
"""
return [] def startswith(self, prefix, start=None, end=None): # real signature unknown; restored from __doc__
"""
S.startswith(prefix[, start[, end]]) -> bool Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
"""
return False def strip(self, chars=None): # real signature unknown; restored from __doc__
"""
S.strip([chars]) -> unicode Return a copy of the string S with leading and trailing
whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is a str, it will be converted to unicode before stripping
"""
return u"" def swapcase(self): # real signature unknown; restored from __doc__
"""
S.swapcase() -> unicode Return a copy of S with uppercase characters converted to lowercase
and vice versa.
"""
return u"" def title(self): # real signature unknown; restored from __doc__
"""
S.title() -> unicode Return a titlecased version of S, i.e. words start with title case
characters, all remaining cased characters have lower case.
"""
return u"" def translate(self, table): # real signature unknown; restored from __doc__
"""
S.translate(table) -> unicode Return a copy of the string S, where all characters have been mapped
through the given translation table, which must be a mapping of
Unicode ordinals to Unicode ordinals, Unicode strings or None.
Unmapped characters are left untouched. Characters mapped to None
are deleted.
"""
return u"" def upper(self): # real signature unknown; restored from __doc__
"""
S.upper() -> unicode Return a copy of S converted to uppercase.
"""
return u"" def zfill(self, width): # real signature unknown; restored from __doc__
"""
S.zfill(width) -> unicode Pad a numeric string S with zeros on the left, to fill a field
of the specified width. The string S is never truncated.
"""
return u"" def _formatter_field_name_split(self, *args, **kwargs): # real signature unknown
pass def _formatter_parser(self, *args, **kwargs): # real signature unknown
pass def __add__(self, y): # real signature unknown; restored from __doc__
""" x.__add__(y) <==> x+y """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __format__(self, format_spec): # real signature unknown; restored from __doc__
"""
S.__format__(format_spec) -> unicode Return a formatted version of S as described by format_spec.
"""
return u"" def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j] Use of negative indices is not supported.
"""
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass def __init__(self, string=u'', encoding=None, errors='strict'): # known special case of unicode.__init__
"""
unicode(object='') -> unicode object
unicode(string[, encoding[, errors]]) -> unicode object Create a new Unicode object from the given encoded string.
encoding defaults to the current default string encoding.
errors can be 'strict', 'replace' or 'ignore' and defaults to 'strict'.
# (copied from class doc)
"""
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass class xrange(object):
"""
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand. For looping, this is
slightly faster than range() and more memory efficient.
"""
def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __init__(self, stop): # real signature unknown; restored from __doc__
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __reversed__(self, *args, **kwargs): # real signature unknown
""" Returns a reverse iterator. """
pass # variables with complex values Ellipsis = None # (!) real value is '' NotImplemented = None # (!) real value is ''

python2内置属性的更多相关文章

  1. javascript内置属性——arguments

    arguments是javascript中的内置属性,可以直接调用函数的参数,作用类似Array,但本身并不是数组.这次发现它是为了实现封装函数,将不确定数量的数字乘积.比如function mult ...

  2. Ant 脚本打印系统属性变量、ant内置属性

    Ant 脚本打印系统属性变量.ant内置属性 作用 编写ant脚本的时候,经常会引用到系统属性,本脚本用于打印系统常用属性(System.getProperties)与环境变量(Environment ...

  3. JavaScript学习——内置属性

    在js中,几乎所有的对象都是同源对象,都继承Object对象.对象的内置属性指的是它们作为Object实例所具有的属性,这些属性通常反映对象本身的基本信息和数据无关.因此我们称它们为元属性.这些属性通 ...

  4. 对象的内置属性和js的对象之父Object()

    js中对象有constructor,valueOf(),toString()等内置属性和方法; 创建一个空对象的方法: var o = {}; 或者 var o= new Object(); o.co ...

  5. Maven内置属性

    1.内置属性:如${project.basedir}表示项目根目录,${ project.version}表示项目版本 2.POM属性:用户可以引用pom文件中对应的值.如: ${project.bu ...

  6. Maven内置属性、POM属性

    1.内置属性(Maven预定义,用户可以直接使用) ${basedir}表示项目根目录,即包含pom.xml文件的目录; ${version}表示项目版本; ${project.basedir}同${ ...

  7. python的反射函数(hasattr()、getattr()、setattr()与delattr())和类的内置属性attr(__getattr()__、__setattr()__与__delattr()__)

    主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省),有四个可以实现自省函数. hasattr(object,name) 判断object中是否有name字符串对应的属性或方法,返回Tr ...

  8. Maven内置属性,pom属性

    内置属性(Maven预定义,用户可以直接使用) ${basedir}表示项目根目录,即包含pom.xml文件的目录; ${version}表示项目版本; ${project.basedir}同${ba ...

  9. Maven内置属性及使用

    Maven共有6类属性: 内置属性(Maven预定义,用户可以直接使用) ${basedir}表示项目根目录,即包含pom.xml文件的目录; ${version}表示项目版本; ${project. ...

随机推荐

  1. 模式匹配之Boyer-Moore算法

    BM 算法是一个较优的模式匹配算法.一般,如果不考虑模式串的长度,一个具有时间复杂度O(n)的算法应该是最优的了,但是事实不是如此.BM算法可以实现更高效率的模式匹配.分析和实验说明,BM匹配算法对于 ...

  2. (转)spark日志配置

    一.第一部分 1.spark2.1与hadoop2.7.3集成,spark on yarn模式下,需要对hadoop的配置文件yarn-site.xml增加内容,如下: <property> ...

  3. jQuery(三):样式操作

    一.DOM操作分类 DOM Core:任何一种支持DOM的编程语言都可以使用它,例如:getElementById(). HTML-DOM:用于处理HTML文档,例如:document.forms. ...

  4. JavaScript(三):数据类型转换

    一.转换函数 1.parseInt() parseInt()函数可以将任何类型的值转换为整数. 例如: <!DOCTYPE html> <html lang="en&quo ...

  5. .NET中使用FastReport实现打印功能

    FastReport是功能非常强大的报表工具,在本篇文章中讲解如何使用FastReport实现打印功能. 一.新建一个窗体程序,窗体上面有设计界面和预览界面两个按钮,分别对应FastReport的设计 ...

  6. SSM整合pom.xml和导包

    SSM 整合-自己写的 SSM Spring +SpringMVC+Mybatis 配置 及pom.xml SSM框架(spring+springMVC+Mybatis) pom.xml文件 mave ...

  7. Web服务端开发需要考虑的问题

    API设计 是否Restful. 首先需要清楚,Restful是一种风格而不是规范,不存在必须遵守的问题. Restful本质上是对HTTP API进行有效的分类. 分类是应该的,可以让API组织变得 ...

  8. lr11.0负载测试 real-world schedule 与basic schedule的区别是什么

    real-world schedule 是真实场景模式  可以通过增加ACTION来增加多个用户 basic schedule 是我们以前用的 经典模式  只能设置一次负载的上升和下降

  9. (笔记)Linux内核中内存相关的操作函数

    linux内核中内存相关的操作函数 1.kmalloc()/kfree() static __always_inline void *kmalloc(size_t size, gfp_t flags) ...

  10. discuz X论坛技术架构 MVC结构浅析

    摘自:http://yeyuan.iteye.com/blog/930727 PS:本人刚接触discuz论坛,php水平有限,当中的理解,如有不正确之处,欢迎指出 ----------------- ...