Description

傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们。 这不,幻想乡突然发生了地震,所有的道路都崩塌了。现在的首要任务是尽快让幻想乡的交通体系重新建立起来。幻想乡一共有n个地方,那么最快的方法当然是修复n-1条道路将这n个地方都连接起来。 幻想乡这n个地方本来是连通的,一共有m条边。现在这m条边由于地震的关系,全部都毁坏掉了。每条边都有一个修复它需要花费的时间,第i条边所需要的时间为ei。地震发生以后,由于幽香是一位人生经验丰富,见得多了的长者,她根据以前的经验,知道每次地震以后,每个ei会是一个0到1之间均匀分布的随机实数。并且所有ei都是完全独立的。 现在幽香要出发去帮忙修复道路了,她可以使用一个神奇的大魔法,能够选择需要的那n-1条边,同时开始修复,那么修复完成的时间就是这n-1条边的ei的最大值。当然幽香会先使用一个更加神奇的大魔法来观察出每条边ei的值,然后再选择完成时间最小的方案。 幽香在走之前,她想知道修复完成的时间的期望是多少呢?

Input

第一行两个数n,m,表示地方的数量和边的数量。其中点从1到n标号。

接下来m行,每行两个数a,b,表示点a和点b之间原来有一条边。

这个图不会有重边和自环。

Output

一行输出答案,四舍五入保留6位小数。

Sample Input

5 4
1 2
1 5
4 3
5 3

Sample Output

0.800000

HINT

提示:

(以下内容与题意无关,对于解题也不是必要的。)

对于n个[0,1]之间的随机变量x1,x2,...,xn,第k小的那个的期望值是k/(n+1)。

样例解释:

对于第一个样例,由于只有4条边,幽香显然只能选择这4条,那么答案就是4条边的ei中最大的数的期望,由提示中的内容,可知答案为0.8。

数据范围:

对于所有数据:n<=10, m<=n(n-1)/2, n,m>=1。

对于15%的数据:n<=3。

另有15%的数据:n<=10, m=n。

另有10%的数据:n<=10, m=n(n-1)/2。

另有20%的数据:n<=5。

另有20%的数据:n<=8。


思路

首先考虑怎么统计答案

因为显然不可以直接枚举边来统计贡献

所以可以考虑算出从小到大加入j条边的时候恰好联通的方案数(因为方案数/组合数=概率)

设$f_{i,j}$表示点集是i连了j条边不连通的方案数

$g_{i,j}$表示点集是i连了j条边联通的方案数

很显然$f_{i,j}+g_{i,j}=C_^j$

这个时候w是点集i内部的所有边的个数

然后我们为了不重复计算可以枚举包含一个点的部分进行dp,比如为了方便取lowbit

然后设当前全集是s,枚举的子集是sub(包含lowbit)

那么有转移$f_{s,i+j}=\sum_{sub\in s}g_{sub,i}*C_{w_{s\oplus sub}}^$


#include<bits/stdc++.h>

using namespace std;

typedef long double ld;

const int N = (1 << 10) + 10;
const int M = 110; int n, m, cnt[N], siz[N];
ld c[M][M], f[N][M], g[N][M]; int main() {
scanf("%d %d", &n, &m);
int up = 1 << n;
for (int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
for (int s = 0; s < up; s++) {
if (!((s >> (u - 1)) & 1)) continue;
if (!((s >> (v - 1)) & 1)) continue;
++cnt[s];
}
}
for (int i = 1; i <= up; i++) {
for (int j = 1; j <= n; j++) {
if ((i >> (j - 1)) & 1) ++siz[i];
}
}
for (int i = 0; i <= m; i++) c[i][0] = 1;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= i; j++) {
c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
}
}
for (int s = 1; s < up; s++) {
if (siz[s] == 1) {
g[s][0] = 1;
continue;
}
int cur = s & (-s);
for (int sub = (s - 1) & s; sub; sub = (sub - 1) & s) if (sub & cur) {
for (int i = 0; i <= cnt[sub]; i++) {
for (int j = 0; j <= cnt[s ^ sub]; j++) {
f[s][i + j] += g[sub][i] * c[cnt[s ^ sub]][j];
}
}
}
for (int i = 0; i <= m; i++) {
g[s][i] = c[cnt[s]][i] - f[s][i];
}
}
ld ans = 0.0;
for (int i = 0; i <= m; i++) {
ans += f[up - 1][i] / c[cnt[up - 1]][i];
}
ans /= m + 1;
printf("%.6Lf", ans);
return 0;
}

BZOJ3925: [Zjoi2015]地震后的幻想乡【概率期望+状压DP】的更多相关文章

  1. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  2. BZOJ3925: [Zjoi2015]地震后的幻想乡

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  3. 【BZOJ3925】地震后的幻想乡(期望概率DP,状压DP)

    题意:给定一张点数不超过10的无向连通图,每条边有一个[0,1]之间的随机权值,求最小生成树上最大边的期望值 提示:对于n个[0,1]之间的随机变量x1,x2,...,xn,第k小的那个的期望值是k/ ...

  4. BZOJ 3925: [Zjoi2015] 地震后的幻想乡(概率DP)

    这里有一篇很好很强的博客%%% YouSiki大佬的博客 多理解一会就行了- 代码 #include <bits/stdc++.h> using namespace std; typede ...

  5. BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)

    下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...

  6. 【BZOJ3925】[ZJOI2015]地震后的幻想乡(动态规划)

    [BZOJ3925][ZJOI2015]地震后的幻想乡(动态规划) 题面 BZOJ 洛谷 题解 题目里面有一句提示:对于\(n\)个\([0,1]\)之间的随机变量\(x1,x2,...,xn\),第 ...

  7. [bzoj3925] [洛谷P3343] [ZJOI2015] 地震后的幻想乡

    Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...

  8. 【BZOJ3925】[ZJOI2015] 地震后的幻想乡(状压期望DP)

    点此看题面 大致题意: 有\(n\)个点和\(m\)条边,每条边的权值是一个\(0\sim1\)的随机实数,要你用\(n-1\)条边将图联通,问这\(n-1\)条边中边权最大值的期望最小值. 提示 这 ...

  9. 【洛谷3343_BZOJ3925】[ZJOI2015]地震后的幻想乡(状压 DP_期望)

    题目: 洛谷 3343 BZOJ 3925 分析: 谁给我说这是个期望概率神题的,明明没太大关系好吧 「提示」里那个结论哪天想起来再问 Jumpmelon 怎么证. 首先,由于开始修路前 \(e_i\ ...

随机推荐

  1. DDD领域模型和充血对象

    DDD领域模型 官方说法 领域驱动设计,它是对面向对象的的分析和设计(OOAD,Object Orient Analysis Design)的一个补充,对技术框架进行了分层规划,同时对每个类进行了策略 ...

  2. threejs和3d各种效果的学习

    写给即将开始threejs学习的自己,各种尝试,各种记忆.不要怕,灰色的年华终会过去. 一个技术学习的快慢,以及你的深刻程度,还有你的以后遇到这个东西的时候的反应速度,很大程度上,取决于你的博客的深刻 ...

  3. PHP访问Oracle数据库

    说明:Oracle数据库帐号:sticOracle数据库密码:sticOracle数据库实例:orclOracle数据库表:UserInfoOracle表的列:ID,Name 不处理异常的代码如下:/ ...

  4. 雷林鹏分享:C# 多线程

    C# 多线程 线程 被定义为程序的执行路径.每个线程都定义了一个独特的控制流.如果您的应用程序涉及到复杂的和耗时的操作,那么设置不同的线程执行路径往往是有益的,每个线程执行特定的工作. 线程是轻量级进 ...

  5. 3.5 MIPS体系结构

    计算机组成 3 指令系统体系结构 3.5 MIPS体系结构 MIPS是精简指令系统的代表,采用了与X86相反的设计理念,并引领了精简指令系统的潮流,那就让我们一起来看一看这究竟是怎么一回事. 要探讨M ...

  6. codeforces 559b//Equivalent Strings// Codeforces Round #313(Div. 1)

    题意:定义了字符串的相等,问两串是否相等. 卡了时间,空间,不能新建字符串,否则会卡. #pragma comment(linker,"/STACK:1024000000,102400000 ...

  7. Spring Boot 介绍

    Spring Boot 能够让你更加容易创建一个独立启动,产品化的,并且是基于 Spring 的应用程序.我们为 Spring 平台及第三方库提供开箱即用的设置,这样你就可以有条不紊的开始开发,减少在 ...

  8. Leetcode 89

    回溯写到自闭:不想就删了: class Solution { public: vector<int> grayCode(int n) { vector<vector<int&g ...

  9. BUCTOJ_ACM2017C 回文串的热爱

    #include "iostream" #include "algorithm" #include "cstdio" #include &q ...

  10. oracle进行字符串拆分并组成数组

    CREATE OR REPLACE TYPE CUX_STR_SPLIT_TYPE IS TABLE OF VARCHAR2 (4000); CREATE OR REPLACE PACKAGE cux ...