maskrcnn_benchmark代码分析(2)
maskrcnn_benchmark训练过程
->训练命令:
python tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025 SOLVER.MAX_ITER 720000 SOLVER.STEPS "(480000, 640000)" TEST.IMS_PER_BATCH 1
->调用train_net.py,在train()函数中建立模型,优化器,dataloader,checkpointerd等,进入trainer.py核心训练代码:
def do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
):
logger = logging.getLogger("maskrcnn_benchmark.trainer")
logger.info("Start training")
meters = MetricLogger(delimiter=" ")
max_iter = len(data_loader)
start_iter = arguments["iteration"]
model.train()
start_training_time = time.time()
end = time.time()
for iteration, (images, targets, _) in enumerate(data_loader, start_iter):
data_time = time.time() - end
arguments["iteration"] = iteration scheduler.step() images = images.to(device)
targets = [target.to(device) for target in targets] loss_dict = model(images, targets)
ipdb.set_trace()
losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters.update(loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad()
losses.backward()
optimizer.step() batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time) eta_seconds = meters.time.global_avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if iteration % 20 == 0 or iteration == (max_iter - 1):
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if iteration % checkpoint_period == 0 and iteration > 0:
checkpointer.save("model_{:07d}".format(iteration), **arguments) checkpointer.save("model_{:07d}".format(iteration), **arguments)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (max_iter)
)
)
->输出一次迭代,变量过程,target为batch=2的gt图像:
ipdb> loss_dict
{'loss_box_reg': tensor(0.1005, device='cuda:0', grad_fn=<DivBackward0>), 'loss_rpn_box_reg': tensor(0.0486, device='cuda:0', grad_fn=<DivBackward0>), 'loss_objectness': tensor(0.0165, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>), 'loss_classifier': tensor(0.2494, device='cuda:0', grad_fn=<NllLossBackward>), 'loss_mask': tensor(0.2332, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)}
ipdb> images
<maskrcnn_benchmark.structures.image_list.ImageList object at 0x7f9cb9190668>
ipdb> targets
[BoxList(num_boxes=3, image_width=1066, image_height=800, mode=xyxy), BoxList(num_boxes=17, image_width=1199, image_height=800, mode=xyxy)]
进入model内部进行:
->在generalized_rcnn.py中经过backbone网络提取特征feature:features = self.backbone(images.tensors)
ipdb> features[0].size()
torch.Size([2, 256, 200, 336])
ipdb> features[1].size()
torch.Size([2, 256, 100, 168])
ipdb> features[2].size()
torch.Size([2, 256, 50, 84])
ipdb> features[3].size()
torch.Size([2, 256, 25, 42])
ipdb> features[4].size()
torch.Size([2, 256, 13, 21])
RNP网络
->proposals, proposal_losses = self.rpn(images, features, targets)
def forward(self, images, features, targets=None):
"""
Arguments:
images (ImageList): images for which we want to compute the predictions
features (list[Tensor]): features computed from the images that are
used for computing the predictions. Each tensor in the list
correspond to different feature levels
targets (list[BoxList): ground-truth boxes present in the image (optional) Returns:
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
image.
losses (dict[Tensor]): the losses for the model during training. During
testing, it is an empty dict.
"""
objectness, rpn_box_regression = self.head(features)
anchors = self.anchor_generator(images, features) if self.training:
return self._forward_train(anchors, objectness, rpn_box_regression, targets)
else:
return self._forward_test(anchors, objectness, rpn_box_regression) def _forward_train(self, anchors, objectness, rpn_box_regression, targets):
if self.cfg.MODEL.RPN_ONLY:
# When training an RPN-only model, the loss is determined by the
# predicted objectness and rpn_box_regression values and there is
# no need to transform the anchors into predicted boxes; this is an
# optimization that avoids the unnecessary transformation.
boxes = anchors
else:
# For end-to-end models, anchors must be transformed into boxes and
# sampled into a training batch.
with torch.no_grad():
boxes = self.box_selector_train(
anchors, objectness, rpn_box_regression, targets
)
loss_objectness, loss_rpn_box_reg = self.loss_evaluator(
anchors, objectness, rpn_box_regression, targets
)
losses = {
"loss_objectness": loss_objectness,
"loss_rpn_box_reg": loss_rpn_box_reg,
}
return boxes, losses
->首先所有feature通过rpn_head网络(3×3+1×1分类与回归)得到结果;然后和生成的anchor进行算loss
->objectness, rpn_box_regression = self.head(features)返回5个stage下回归和分类的结果,每个等级3个anchor
ipdb> objectness[0].size()
torch.Size([2, 3, 200, 336]) =200*336*3=201600
ipdb> objectness[1].size()
torch.Size([2, 3, 100, 168])
ipdb> objectness[2].size()
torch.Size([2, 3, 50, 84])
ipdb> objectness[3].size()
torch.Size([2, 3, 25, 42])
ipdb> objectness[4].size()
torch.Size([2, 3, 13, 21])
ipdb> objectness[5].size()
*** IndexError: list index out of range
ipdb> rpn_box_regression[0].size()
torch.Size([2, 12, 200, 336])
ipdb> rpn_box_regression[4].size()
torch.Size([2, 12, 13, 21])
-> anchors = self.anchor_generator(images, features)生成anchor
ipdb> anchors[1][0]
BoxList(num_boxes=201600, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][1]
BoxList(num_boxes=50400, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[0][1]
BoxList(num_boxes=50400, image_width=1333, image_height=794, mode=xyxy)
ipdb> anchors[1][2]
BoxList(num_boxes=12600, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][3]
BoxList(num_boxes=3150, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][4]
BoxList(num_boxes=819, image_width=1204, image_height=800, mode=xyxy)
->boxes = self.box_selector_train(anchors, objectness, rpn_box_regression, targets)选择boxes去训练fast rcnn,这一步不需要梯度更新
ipdb> boxes
[BoxList(num_boxes=316, image_width=1333, image_height=794, mode=xyxy), BoxList(num_boxes=1696, image_width=1204, image_height=800, mode=xyxy)]
-> loss_objectness, loss_rpn_box_reg = self.loss_evaluator(anchors, objectness, rpn_box_regression, targets) 算loss时候选择正负1:1的anchor进行训练rpn网络
->这里选择512个样本训练;_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256;两张图像
ipdb> sampled_pos_inds
tensor([ 16477, 16480, 16483, 16486, 17485, 17488, 17491, 17494, 18493,
18496, 18499, 18502, 19501, 19504, 19507, 19510, 217452, 217453,
217455, 217456, 217458, 217459, 217960, 268151, 529150, 534017, 534020,
534143, 534146, 534586, 534607, 534712, 534733, 534838, 534859, 535356,
535359, 535362, 535365, 535368, 536602, 536652, 536655, 536658, 536661,
536664, 536667, 536670, 536715, 536718, 536721, 536724, 536727, 536730,
536733, 536778, 536781, 536784, 536787, 536790, 536793, 536796, 536841,
536844, 536847, 536850, 536853, 536856, 536859], device='cuda:0')
ipdb> sampled_neg_inds
tensor([ 3045, 4275, 5323, 6555, 7538, 8406, 8469, 9761, 11316,
11684, 12319, 13195, 13354, 15405, 20431, 25105, 26405, 26786,
27324, 30698, 33503, 38168, 39244, 40064, 40535, 41046, 41162,
41203, 41864, 43170, 44060, 44416, 44905, 45161, 47299, 48043,
49890, 49900, 50992, 51248, 52082, 52236, 52371, 52568, 54079,
54207, 55251, 56973, 57135, 58376, 59816, 61509, 62473, 62942,
64722, 65548, 66681, 67925, 68650, 71368, 72610, 73268, 74727,
75655, 77795, 78937, 79115, 80101, 80808, 81001, 83846, 87064,
89891, 91207, 92579, 92771, 93113, 94118, 94526, 94586, 95822,
96850, 97256, 97303, 97500, 98194, 98338, 101724, 102082, 103835,
103947, 104678, 105168, 105630, 106132, 108751, 108933, 109684, 110552,
111373, 111965, 114691, 114736, 115213, 115468, 120710, 121785, 123138,
126383, 126957, 128197, 128282, 129449, 130472, 132269, 133131, 133384,
135197, 135926, 136468, 137306, 137620, 138671, 141848, 142643, 145618,
147402, 148283, 148353, 149313, 150389, 150528, 151949, 154413, 156156,
157155, 158716, 160001, 160227, 160428, 160496, 160920, 161023, 162605,
163131, 166371, 166561, 167200, 171280, 174531, 175690, 175957, 175996,
179025, 179766, 180781, 182893, 182980, 183152, 183159, 183531, 183785,
184531, 185565, 186520, 187194, 187772, 188100, 191068, 191289, 191419,
192022, 193388, 194892, 196902, 204682, 206878, 207981, 208066, 208366,
210761, 210862, 211624, 213567, 213627, 214601, 214651, 214770, 215032,
216806, 218299, 220127, 220221, 221133, 222489, 223512, 224844, 225115,
225225, 225337, 228044, 228580, 228691, 229787, 231390, 231405, 231666,
233068, 233379, 233416, 234464, 236145, 238078, 239161, 239633, 240260,
240492, 241033, 241702, 241758, 242546, 243372, 244102, 248078, 248632,
255377, 256325, 257079, 258010, 259857, 260872, 261896, 271659, 274495,
275822, 276450, 276728, 278865, 279179, 279338, 279735, 280208, 280216,
282300, 283240, 283717, 285074, 285157, 287528, 287804, 288191, 289901,
290179, 294877, 296999, 298420, 301631, 301890, 303575, 304982, 305983,
305992, 307922, 312438, 313507, 314289, 316348, 318599, 319751, 321304,
321735, 321748, 326308, 326315, 327131, 327290, 327671, 328439, 332674,
333130, 333144, 334633, 336337, 337399, 340980, 341619, 347289, 347364,
347579, 353057, 353309, 354001, 355039, 355271, 355597, 356617, 359064,
359068, 360402, 362098, 362652, 363356, 363741, 364744, 365997, 370109,
370949, 372977, 373248, 373992, 374786, 375293, 376785, 377661, 377761,
378991, 379663, 380167, 380817, 382269, 383560, 387387, 388389, 389665,
389862, 390138, 391941, 394183, 399113, 400423, 402411, 404907, 405436,
406457, 407348, 408005, 408356, 409728, 411376, 411571, 412210, 412426,
415363, 415453, 415601, 418159, 418174, 418928, 419064, 419394, 419783,
421039, 421405, 423287, 426369, 429895, 430293, 431338, 432330, 432745,
433529, 433699, 433738, 435389, 437567, 438410, 439164, 440481, 442532,
445424, 446074, 446146, 446550, 447703, 449683, 450601, 451138, 452505,
455922, 457464, 460557, 461150, 461431, 462641, 463544, 471945, 472032,
473327, 474938, 475450, 477505, 477917, 478033, 479038, 480127, 481613,
482384, 484433, 484542, 484556, 484588, 487380, 490897, 492173, 493279,
493464, 494139, 498077, 498172, 498426, 499201, 500289, 500739, 503145,
506227, 506661, 509266, 509355, 509382, 509556, 510331, 510346, 511426,
511604, 512428, 512560, 513306, 514096, 515320, 516682, 516949, 517815,
517984, 524421, 525174, 525384, 525697, 526692, 527047, 527576, 532272,
535005, 535582], device='cuda:0')
ipdb> sampled_pos_inds.size()
torch.Size([69])
ipdb> sampled_neg_inds.size()
torch.Size([443])
-> 调用rpn/loss.py: class RPNLossComputation(object):
def __call__(self, anchors, objectness, box_regression, targets):
"""
Arguments:
anchors (list[BoxList])
objectness (list[Tensor])
box_regression (list[Tensor])
targets (list[BoxList]) Returns:
objectness_loss (Tensor)
box_loss (Tensor
"""
anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
labels, regression_targets = self.prepare_targets(anchors, targets)
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1) sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) objectness_flattened = []
box_regression_flattened = []
# for each feature level, permute the outputs to make them be in the
# same format as the labels. Note that the labels are computed for
# all feature levels concatenated, so we keep the same representation
# for the objectness and the box_regression
for objectness_per_level, box_regression_per_level in zip(
objectness, box_regression
):
N, A, H, W = objectness_per_level.shape
objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape(
N, -1
)
box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W)
box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2)
box_regression_per_level = box_regression_per_level.reshape(N, -1, 4)
objectness_flattened.append(objectness_per_level)
box_regression_flattened.append(box_regression_per_level)
# concatenate on the first dimension (representing the feature levels), to
# take into account the way the labels were generated (with all feature maps
# being concatenated as well)
objectness = cat(objectness_flattened, dim=1).reshape(-1)
box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4) labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0) box_loss = smooth_l1_loss(
box_regression[sampled_pos_inds],
regression_targets[sampled_pos_inds],
beta=1.0 / 9,
size_average=False,
) / (sampled_inds.numel()) objectness_loss = F.binary_cross_entropy_with_logits(
objectness[sampled_inds], labels[sampled_inds]
) return objectness_loss, box_loss
->变量打印:最后只使用选中的sampled_inds进行rpn的loss计算:
ipdb> objectness
tensor([-1.7661, 1.3304, -3.6243, ..., 0.0558, 1.1206, 0.6639],
device='cuda:0', grad_fn=<AsStridedBackward>)
ipdb> objectness.shape
torch.Size([537138])
ipdb> labels
tensor([-1., -1., -1., ..., -1., -1., -1.], device='cuda:0')
ipdb> labels.shape
torch.Size([537138])
ipdb> box_regression
tensor([[-0.1721, -0.2121, 0.1083, -0.5830],
[-0.1728, -0.0665, -0.6760, -0.8508],
[-0.0958, -0.0096, -0.1450, 0.2591],
...,
[-0.0041, 0.0209, 0.2075, -0.0639],
[ 0.0016, 0.0539, -0.1746, -0.1428],
[ 0.0038, -0.0308, -0.0916, 0.0726]], device='cuda:0',
grad_fn=<AsStridedBackward>)
ipdb> box_regression.shape
torch.Size([537138, 4])
ipdb> regression_targets
tensor([[10.3858, 12.5126, 1.8582, 3.0168],
[15.5788, 9.3845, 2.2637, 2.7292],
[20.7717, 6.2563, 2.5514, 2.3237],
...,
[-1.0482, -1.0875, -1.2006, -0.7158],
[-1.4904, -0.7816, -0.8487, -1.0460],
[-2.1197, -0.5558, -0.4964, -1.3870]], device='cuda:0')
ipdb> regression_targets.shape
torch.Size([537138, 4])
-> 最后rpn网络返回:
ipdb> loss_objectness
tensor(0.0268, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)
ipdb> loss_rpn_box_reg
tensor(0.0690, device='cuda:0', grad_fn=<DivBackward0>)
ipdb> boxes
[BoxList(num_boxes=316, image_width=1333, image_height=794, mode=xyxy), BoxList(num_boxes=1696, image_width=1204, image_height=800, mode=xyxy)]
Fast RCNN+Mask
->generalized_rcnn.py文件: x, result, detector_losses = self.roi_heads(features, proposals, targets)
->重新换的图像rpn网络输出信息:
ipdb> proposals
[BoxList(num_boxes=571, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=1468, image_width=1199, image_height=800, mode=xyxy)]
ipdb> proposal_losses
{'loss_objectness': tensor(0.0656, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>), 'loss_rpn_box_reg': tensor(0.2036, device='cuda:0', grad_fn=<DivBackward0>)}
->roi_heads.py分box和mask两部分:
->这里用FPN网络,所以在box和mask进行特征抽取(进行roipool)的时候,进行每个层级上的pool操作,这里还可以进行特征抽取时参数共享;
-> 所以输入mask分支的mask_features是原始的backbone网络的features,只不过在上面去box分支出来的detections区域进行loss计算;
def forward(self, features, proposals, targets=None):
losses = {}
# TODO rename x to roi_box_features, if it doesn't increase memory consumption
x, detections, loss_box = self.box(features, proposals, targets)
losses.update(loss_box)
if self.cfg.MODEL.MASK_ON:
mask_features = features
# optimization: during training, if we share the feature extractor between
# the box and the mask heads, then we can reuse the features already computed
if (
self.training
and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR
):
mask_features = x
# During training, self.box() will return the unaltered proposals as "detections"
# this makes the API consistent during training and testing
x, detections, loss_mask = self.mask(mask_features, detections, targets)
losses.update(loss_mask)
return x, detections, losses
->x, detections, loss_box = self.box(features, proposals, targets) fast rcnn的分类与回归部分:
->x = self.feature_extractor(features, proposals)这里的特征提取分roipooling和抽取成roipool_feature,可以和mask分支共享,然后再分(分类+回归,mask)两个loss分支;
def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets. Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the subsampled proposals
are returned. During testing, the predicted boxlists are returned
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
""" if self.training:
# Faster R-CNN subsamples during training the proposals with a fixed
# positive / negative ratio
with torch.no_grad():
proposals = self.loss_evaluator.subsample(proposals, targets) # extract features that will be fed to the final classifier. The
# feature_extractor generally corresponds to the pooler + heads
x = self.feature_extractor(features, proposals)
# final classifier that converts the features into predictions
class_logits, box_regression = self.predictor(x) if not self.training:
result = self.post_processor((class_logits, box_regression), proposals)
return x, result, {} loss_classifier, loss_box_reg = self.loss_evaluator(
[class_logits], [box_regression]
)
return (
x,
proposals,
dict(loss_classifier=loss_classifier, loss_box_reg=loss_box_reg),
)
->训练的时候每张图选择512个box训练,输出([1024, 81])类别; ([1024, 324])回归坐标81×4=324;
ipdb> x.shape
torch.Size([1024, 1024])
ipdb> proposals
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> class_logits.shape
torch.Size([1024, 81])
ipdb> box_regression
tensor([[ 1.2481e-02, -1.5032e-02, 2.6849e-03, ..., 2.6986e-03,
1.4723e-01, -5.2207e-01],
[-5.7448e-03, -7.5938e-03, -2.6571e-03, ..., 1.3588e-01,
-3.1587e-01, 6.2171e-01],
[-6.6426e-03, -3.4121e-03, -9.5814e-04, ..., -4.7817e-01,
-2.8117e-03, 1.6653e-01],
...,
[-1.1446e-02, -4.6574e-03, -8.0981e-04, ..., -5.0460e-01,
6.2465e-01, -4.1426e-01],
[ 6.0940e-05, -1.2032e-02, -5.0753e-03, ..., 1.0396e+00,
-1.9913e-01, -1.2819e+00],
[-4.9718e-03, -6.6546e-03, -2.5202e-03, ..., 3.9986e-02,
-6.0675e-02, -1.1396e-01]], device='cuda:0', grad_fn=<AddmmBackward>)
ipdb> box_regression.shape
torch.Size([1024, 324])
ipdb> loss_classifier
tensor(0.3894, device='cuda:0', grad_fn=<NllLossBackward>)
ipdb> loss_box_reg
tensor(0.1674, device='cuda:0', grad_fn=<DivBackward0>)
->整体x, detections, loss_box = self.box(features, proposals, targets)输出,x为box和mask分支的特征;选择512个box计算loss并传入mask分支
ipdb> x.shape
torch.Size([1024, 1024])
ipdb> proposals
[BoxList(num_boxes=571, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=1468, image_width=1199, image_height=800, mode=xyxy)]
ipdb> detections
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> loss_box
{'loss_box_reg': tensor(0.1674, device='cuda:0', grad_fn=<DivBackward0>), 'loss_classifier': tensor(0.3894, device='cuda:0', grad_fn=<NllLossBackward>)}
->x, detections, loss_mask = self.mask(mask_features, detections, targets) mask分支:
-> 仅利用检测出来的proposals中有目标的positive_inds;
def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets. Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the original proposals
are returned. During testing, the predicted boxlists are returned
with the `mask` field set
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
""" if self.training:
# during training, only focus on positive boxes
all_proposals = proposals
proposals, positive_inds = keep_only_positive_boxes(proposals)
if self.training and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR:
x = features
x = x[torch.cat(positive_inds, dim=0)]
else:
x = self.feature_extractor(features, proposals)
mask_logits = self.predictor(x) if not self.training:
result = self.post_processor(mask_logits, proposals)
return x, result, {} loss_mask = self.loss_evaluator(proposals, mask_logits, targets) return x, all_proposals, dict(loss_mask=loss_mask)
-> 变量结果:只把正例进行loss计算,变少很多; 然后pool后的特征维度([171, 256, 14, 14])(由于选的box只有43+128=171)
->训练时,真正有用的返回就是loss_mask;测试的时候返回的是经过后处理的result;
ipdb> all_proposals
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> proposals
[BoxList(num_boxes=43, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=128, image_width=1199, image_height=800, mode=xyxy)]
ipdb> positive_inds.shape
*** AttributeError: 'list' object has no attribute 'shape'
ipdb> positive_inds[0].shape
torch.Size([512])
ipdb> x.shape
torch.Size([171, 256, 14, 14])
ipdb> mask_logits.shape
torch.Size([171, 81, 28, 28]) ipdb> targets[0]
BoxList(num_boxes=4, image_width=1201, image_height=800, mode=xyxy)
ipdb> targets[1]
BoxList(num_boxes=35, image_width=1199, image_height=800, mode=xyxy)
ipdb> loss_mask
tensor(0.3287, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)
-> 至此真个训练loss完成; 进行迭代...
总结:
1. 在模型中已经很好的区分训练和测试部分,处理后返回的结果也不一样;
2. 后续对一些数据结构,数据细节处理在看看!
maskrcnn_benchmark代码分析(2)的更多相关文章
- maskrcnn_benchmark代码分析(1)
可以先参考:Faster-RCNN代码+理论——1/2 Object Detection and Classification using R-CNNs 使用ipdb调试 try: import ip ...
- maskrcnn_benchmark代码分析(3)
数据结构 数据加载 数据后处理
- Android代码分析工具lint学习
1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...
- [Asp.net 5] DependencyInjection项目代码分析-目录
微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)
Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...
- 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)
构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...
- STM32启动代码分析 IAR 比较好
stm32启动代码分析 (2012-06-12 09:43:31) 转载▼ 最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...
- 常用 Java 静态代码分析工具的分析与比较
常用 Java 静态代码分析工具的分析与比较 简介: 本文首先介绍了静态代码分析的基 本概念及主要技术,随后分别介绍了现有 4 种主流 Java 静态代码分析工具 (Checkstyle,FindBu ...
随机推荐
- Windows7双系统的启动顺序怎样修改?
本着工作的原因或个人的原因,不过绝大部分还是因为个人怀旧的因素比较多.大家即使安装了新的Windows 7,可是又不想放弃原来的xp765系统,安装双系统就成为不少人的选择.不过有一个麻烦,那就是系统 ...
- mysql三大特性、三范式、五大约束
1.数据库的三大特性 '实体':表 '属性':表中的数据(字段) '关系':表与表之间的关系 2.数据库设计三大范式 a:确保每列保持原子性(即数据库表中的所有字段值是不可分解的原子值) b:确保表中 ...
- 【WIN10】移植opencc到WIN10-UWP,實現自己的繁簡轉換工具
花了週末兩天時間,將opencc移植成WIN10-UWP可用的庫,並完成自己的繁簡轉換工具. 我的繁簡轉換工具下載地址為:https://www.microsoft.com/store/apps/9n ...
- 堆排序的C++代码实现
堆排序C++实现 堆排序的具体思路可以查看<算法导论>这本书,一下只提供笔者的C++实现代码,并且将笔者在编写程序的过程当中所遇到的一些细节问题拿出来作一番解释,希望能够对对堆排序有一个透 ...
- xcode 拷贝新的ios image 进去以后 出现 the divices is locked
苹果公司时不时的给你更新下ios系统.对于开发者来说.更新xcode是灾难性的. 一直在用xcode7.3.1,可是最新不小心把手机升级到 ios 10.1.1,这下好了,真机调试不行了.提示没有镜像 ...
- 关于 TRegEx.Split()
表达式中的括号将严重影响分割结果. uses RegularExpressions; const FSourceText = '1: AAA 2: BBB 3: CCC'; // 分隔符将有三部分构成 ...
- CentOS 7下启动postfix服务报错:fatal: parameter inet_interfaces: no local interface found for ::1
sed -i 's/inet_interfaces = localhost/inet_interfaces = all' /etc/postfix/main.cf service postfix re ...
- ASP.NET MVC与Sql Server交互, 插入数据
在"ASP.NET MVC与Sql Server建立连接"中,与Sql Server建立了连接.本篇实践向Sql Server中插入数据. 在数据库帮助类中增加插入数据的方法. p ...
- Java Calendar,Date,DateFormat,TimeZone,Locale等时间相关内容的认知和使用(7) TimeZone
本章介绍TimeZone. TimeZone 简介 TimeZone 表示时区偏移量,也可以计算夏令时.在操作 Date, Calendar等表示日期/时间的对象时,经常会用到TimeZone:因为不 ...
- GPG入门教程
原文地址:http://www.ruanyifeng.com/blog/2013/07/gpg.html 作者: 阮一峰 日期: 2013年7月12日 前两篇文章,我介绍了RSA算法. 今天,就接着来 ...