maskrcnn_benchmark训练过程

->训练命令:

python tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025 SOLVER.MAX_ITER 720000 SOLVER.STEPS "(480000, 640000)" TEST.IMS_PER_BATCH 1

->调用train_net.py,在train()函数中建立模型,优化器,dataloader,checkpointerd等,进入trainer.py核心训练代码:

def do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
):
logger = logging.getLogger("maskrcnn_benchmark.trainer")
logger.info("Start training")
meters = MetricLogger(delimiter=" ")
max_iter = len(data_loader)
start_iter = arguments["iteration"]
model.train()
start_training_time = time.time()
end = time.time()
for iteration, (images, targets, _) in enumerate(data_loader, start_iter):
data_time = time.time() - end
arguments["iteration"] = iteration scheduler.step() images = images.to(device)
targets = [target.to(device) for target in targets] loss_dict = model(images, targets)
ipdb.set_trace()
losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters.update(loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad()
losses.backward()
optimizer.step() batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time) eta_seconds = meters.time.global_avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if iteration % 20 == 0 or iteration == (max_iter - 1):
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if iteration % checkpoint_period == 0 and iteration > 0:
checkpointer.save("model_{:07d}".format(iteration), **arguments) checkpointer.save("model_{:07d}".format(iteration), **arguments)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (max_iter)
)
)

->输出一次迭代,变量过程,target为batch=2的gt图像:

ipdb> loss_dict
{'loss_box_reg': tensor(0.1005, device='cuda:0', grad_fn=<DivBackward0>), 'loss_rpn_box_reg': tensor(0.0486, device='cuda:0', grad_fn=<DivBackward0>), 'loss_objectness': tensor(0.0165, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>), 'loss_classifier': tensor(0.2494, device='cuda:0', grad_fn=<NllLossBackward>), 'loss_mask': tensor(0.2332, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)}
ipdb> images
<maskrcnn_benchmark.structures.image_list.ImageList object at 0x7f9cb9190668>
ipdb> targets
[BoxList(num_boxes=3, image_width=1066, image_height=800, mode=xyxy), BoxList(num_boxes=17, image_width=1199, image_height=800, mode=xyxy)]

进入model内部进行:

->在generalized_rcnn.py中经过backbone网络提取特征feature:features = self.backbone(images.tensors)

ipdb> features[0].size()
torch.Size([2, 256, 200, 336])
ipdb> features[1].size()
torch.Size([2, 256, 100, 168])
ipdb> features[2].size()
torch.Size([2, 256, 50, 84])
ipdb> features[3].size()
torch.Size([2, 256, 25, 42])
ipdb> features[4].size()
torch.Size([2, 256, 13, 21])

RNP网络

->proposals, proposal_losses = self.rpn(images, features, targets)

    def forward(self, images, features, targets=None):
"""
Arguments:
images (ImageList): images for which we want to compute the predictions
features (list[Tensor]): features computed from the images that are
used for computing the predictions. Each tensor in the list
correspond to different feature levels
targets (list[BoxList): ground-truth boxes present in the image (optional) Returns:
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
image.
losses (dict[Tensor]): the losses for the model during training. During
testing, it is an empty dict.
"""
objectness, rpn_box_regression = self.head(features)
anchors = self.anchor_generator(images, features) if self.training:
return self._forward_train(anchors, objectness, rpn_box_regression, targets)
else:
return self._forward_test(anchors, objectness, rpn_box_regression) def _forward_train(self, anchors, objectness, rpn_box_regression, targets):
if self.cfg.MODEL.RPN_ONLY:
# When training an RPN-only model, the loss is determined by the
# predicted objectness and rpn_box_regression values and there is
# no need to transform the anchors into predicted boxes; this is an
# optimization that avoids the unnecessary transformation.
boxes = anchors
else:
# For end-to-end models, anchors must be transformed into boxes and
# sampled into a training batch.
with torch.no_grad():
boxes = self.box_selector_train(
anchors, objectness, rpn_box_regression, targets
)
loss_objectness, loss_rpn_box_reg = self.loss_evaluator(
anchors, objectness, rpn_box_regression, targets
)
losses = {
"loss_objectness": loss_objectness,
"loss_rpn_box_reg": loss_rpn_box_reg,
}
return boxes, losses

->首先所有feature通过rpn_head网络(3×3+1×1分类与回归)得到结果;然后和生成的anchor进行算loss

->objectness, rpn_box_regression = self.head(features)返回5个stage下回归和分类的结果,每个等级3个anchor

ipdb> objectness[0].size()
torch.Size([2, 3, 200, 336]) =200*336*3=201600
ipdb> objectness[1].size()
torch.Size([2, 3, 100, 168])
ipdb> objectness[2].size()
torch.Size([2, 3, 50, 84])
ipdb> objectness[3].size()
torch.Size([2, 3, 25, 42])
ipdb> objectness[4].size()
torch.Size([2, 3, 13, 21])
ipdb> objectness[5].size()
*** IndexError: list index out of range
ipdb> rpn_box_regression[0].size()
torch.Size([2, 12, 200, 336])
ipdb> rpn_box_regression[4].size()
torch.Size([2, 12, 13, 21])

-> anchors = self.anchor_generator(images, features)生成anchor

ipdb> anchors[1][0]
BoxList(num_boxes=201600, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][1]
BoxList(num_boxes=50400, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[0][1]
BoxList(num_boxes=50400, image_width=1333, image_height=794, mode=xyxy)
ipdb> anchors[1][2]
BoxList(num_boxes=12600, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][3]
BoxList(num_boxes=3150, image_width=1204, image_height=800, mode=xyxy)
ipdb> anchors[1][4]
BoxList(num_boxes=819, image_width=1204, image_height=800, mode=xyxy)

->boxes = self.box_selector_train(anchors, objectness, rpn_box_regression, targets)选择boxes去训练fast rcnn,这一步不需要梯度更新

ipdb> boxes
[BoxList(num_boxes=316, image_width=1333, image_height=794, mode=xyxy), BoxList(num_boxes=1696, image_width=1204, image_height=800, mode=xyxy)]

-> loss_objectness, loss_rpn_box_reg = self.loss_evaluator(anchors, objectness, rpn_box_regression, targets) 算loss时候选择正负1:1的anchor进行训练rpn网络

->这里选择512个样本训练;_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256;两张图像

ipdb> sampled_pos_inds
tensor([ 16477, 16480, 16483, 16486, 17485, 17488, 17491, 17494, 18493,
18496, 18499, 18502, 19501, 19504, 19507, 19510, 217452, 217453,
217455, 217456, 217458, 217459, 217960, 268151, 529150, 534017, 534020,
534143, 534146, 534586, 534607, 534712, 534733, 534838, 534859, 535356,
535359, 535362, 535365, 535368, 536602, 536652, 536655, 536658, 536661,
536664, 536667, 536670, 536715, 536718, 536721, 536724, 536727, 536730,
536733, 536778, 536781, 536784, 536787, 536790, 536793, 536796, 536841,
536844, 536847, 536850, 536853, 536856, 536859], device='cuda:0')
ipdb> sampled_neg_inds
tensor([ 3045, 4275, 5323, 6555, 7538, 8406, 8469, 9761, 11316,
11684, 12319, 13195, 13354, 15405, 20431, 25105, 26405, 26786,
27324, 30698, 33503, 38168, 39244, 40064, 40535, 41046, 41162,
41203, 41864, 43170, 44060, 44416, 44905, 45161, 47299, 48043,
49890, 49900, 50992, 51248, 52082, 52236, 52371, 52568, 54079,
54207, 55251, 56973, 57135, 58376, 59816, 61509, 62473, 62942,
64722, 65548, 66681, 67925, 68650, 71368, 72610, 73268, 74727,
75655, 77795, 78937, 79115, 80101, 80808, 81001, 83846, 87064,
89891, 91207, 92579, 92771, 93113, 94118, 94526, 94586, 95822,
96850, 97256, 97303, 97500, 98194, 98338, 101724, 102082, 103835,
103947, 104678, 105168, 105630, 106132, 108751, 108933, 109684, 110552,
111373, 111965, 114691, 114736, 115213, 115468, 120710, 121785, 123138,
126383, 126957, 128197, 128282, 129449, 130472, 132269, 133131, 133384,
135197, 135926, 136468, 137306, 137620, 138671, 141848, 142643, 145618,
147402, 148283, 148353, 149313, 150389, 150528, 151949, 154413, 156156,
157155, 158716, 160001, 160227, 160428, 160496, 160920, 161023, 162605,
163131, 166371, 166561, 167200, 171280, 174531, 175690, 175957, 175996,
179025, 179766, 180781, 182893, 182980, 183152, 183159, 183531, 183785,
184531, 185565, 186520, 187194, 187772, 188100, 191068, 191289, 191419,
192022, 193388, 194892, 196902, 204682, 206878, 207981, 208066, 208366,
210761, 210862, 211624, 213567, 213627, 214601, 214651, 214770, 215032,
216806, 218299, 220127, 220221, 221133, 222489, 223512, 224844, 225115,
225225, 225337, 228044, 228580, 228691, 229787, 231390, 231405, 231666,
233068, 233379, 233416, 234464, 236145, 238078, 239161, 239633, 240260,
240492, 241033, 241702, 241758, 242546, 243372, 244102, 248078, 248632,
255377, 256325, 257079, 258010, 259857, 260872, 261896, 271659, 274495,
275822, 276450, 276728, 278865, 279179, 279338, 279735, 280208, 280216,
282300, 283240, 283717, 285074, 285157, 287528, 287804, 288191, 289901,
290179, 294877, 296999, 298420, 301631, 301890, 303575, 304982, 305983,
305992, 307922, 312438, 313507, 314289, 316348, 318599, 319751, 321304,
321735, 321748, 326308, 326315, 327131, 327290, 327671, 328439, 332674,
333130, 333144, 334633, 336337, 337399, 340980, 341619, 347289, 347364,
347579, 353057, 353309, 354001, 355039, 355271, 355597, 356617, 359064,
359068, 360402, 362098, 362652, 363356, 363741, 364744, 365997, 370109,
370949, 372977, 373248, 373992, 374786, 375293, 376785, 377661, 377761,
378991, 379663, 380167, 380817, 382269, 383560, 387387, 388389, 389665,
389862, 390138, 391941, 394183, 399113, 400423, 402411, 404907, 405436,
406457, 407348, 408005, 408356, 409728, 411376, 411571, 412210, 412426,
415363, 415453, 415601, 418159, 418174, 418928, 419064, 419394, 419783,
421039, 421405, 423287, 426369, 429895, 430293, 431338, 432330, 432745,
433529, 433699, 433738, 435389, 437567, 438410, 439164, 440481, 442532,
445424, 446074, 446146, 446550, 447703, 449683, 450601, 451138, 452505,
455922, 457464, 460557, 461150, 461431, 462641, 463544, 471945, 472032,
473327, 474938, 475450, 477505, 477917, 478033, 479038, 480127, 481613,
482384, 484433, 484542, 484556, 484588, 487380, 490897, 492173, 493279,
493464, 494139, 498077, 498172, 498426, 499201, 500289, 500739, 503145,
506227, 506661, 509266, 509355, 509382, 509556, 510331, 510346, 511426,
511604, 512428, 512560, 513306, 514096, 515320, 516682, 516949, 517815,
517984, 524421, 525174, 525384, 525697, 526692, 527047, 527576, 532272,
535005, 535582], device='cuda:0')
ipdb> sampled_pos_inds.size()
torch.Size([69])
ipdb> sampled_neg_inds.size()
torch.Size([443])

-> 调用rpn/loss.py: class RPNLossComputation(object):

    def __call__(self, anchors, objectness, box_regression, targets):
"""
Arguments:
anchors (list[BoxList])
objectness (list[Tensor])
box_regression (list[Tensor])
targets (list[BoxList]) Returns:
objectness_loss (Tensor)
box_loss (Tensor
"""
anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
labels, regression_targets = self.prepare_targets(anchors, targets)
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1) sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) objectness_flattened = []
box_regression_flattened = []
# for each feature level, permute the outputs to make them be in the
# same format as the labels. Note that the labels are computed for
# all feature levels concatenated, so we keep the same representation
# for the objectness and the box_regression
for objectness_per_level, box_regression_per_level in zip(
objectness, box_regression
):
N, A, H, W = objectness_per_level.shape
objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape(
N, -1
)
box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W)
box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2)
box_regression_per_level = box_regression_per_level.reshape(N, -1, 4)
objectness_flattened.append(objectness_per_level)
box_regression_flattened.append(box_regression_per_level)
# concatenate on the first dimension (representing the feature levels), to
# take into account the way the labels were generated (with all feature maps
# being concatenated as well)
objectness = cat(objectness_flattened, dim=1).reshape(-1)
box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4) labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0) box_loss = smooth_l1_loss(
box_regression[sampled_pos_inds],
regression_targets[sampled_pos_inds],
beta=1.0 / 9,
size_average=False,
) / (sampled_inds.numel()) objectness_loss = F.binary_cross_entropy_with_logits(
objectness[sampled_inds], labels[sampled_inds]
) return objectness_loss, box_loss

->变量打印:最后只使用选中的sampled_inds进行rpn的loss计算:

ipdb> objectness
tensor([-1.7661, 1.3304, -3.6243, ..., 0.0558, 1.1206, 0.6639],
device='cuda:0', grad_fn=<AsStridedBackward>)
ipdb> objectness.shape
torch.Size([537138])
ipdb> labels
tensor([-1., -1., -1., ..., -1., -1., -1.], device='cuda:0')
ipdb> labels.shape
torch.Size([537138])
ipdb> box_regression
tensor([[-0.1721, -0.2121, 0.1083, -0.5830],
[-0.1728, -0.0665, -0.6760, -0.8508],
[-0.0958, -0.0096, -0.1450, 0.2591],
...,
[-0.0041, 0.0209, 0.2075, -0.0639],
[ 0.0016, 0.0539, -0.1746, -0.1428],
[ 0.0038, -0.0308, -0.0916, 0.0726]], device='cuda:0',
grad_fn=<AsStridedBackward>)
ipdb> box_regression.shape
torch.Size([537138, 4])
ipdb> regression_targets
tensor([[10.3858, 12.5126, 1.8582, 3.0168],
[15.5788, 9.3845, 2.2637, 2.7292],
[20.7717, 6.2563, 2.5514, 2.3237],
...,
[-1.0482, -1.0875, -1.2006, -0.7158],
[-1.4904, -0.7816, -0.8487, -1.0460],
[-2.1197, -0.5558, -0.4964, -1.3870]], device='cuda:0')
ipdb> regression_targets.shape
torch.Size([537138, 4])

-> 最后rpn网络返回:

ipdb> loss_objectness
tensor(0.0268, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)
ipdb> loss_rpn_box_reg
tensor(0.0690, device='cuda:0', grad_fn=<DivBackward0>)
ipdb> boxes
[BoxList(num_boxes=316, image_width=1333, image_height=794, mode=xyxy), BoxList(num_boxes=1696, image_width=1204, image_height=800, mode=xyxy)]

Fast RCNN+Mask

->generalized_rcnn.py文件: x, result, detector_losses = self.roi_heads(features, proposals, targets)

->重新换的图像rpn网络输出信息:

ipdb> proposals
[BoxList(num_boxes=571, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=1468, image_width=1199, image_height=800, mode=xyxy)]
ipdb> proposal_losses
{'loss_objectness': tensor(0.0656, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>), 'loss_rpn_box_reg': tensor(0.2036, device='cuda:0', grad_fn=<DivBackward0>)}

->roi_heads.py分box和mask两部分:

->这里用FPN网络,所以在box和mask进行特征抽取(进行roipool)的时候,进行每个层级上的pool操作,这里还可以进行特征抽取时参数共享;

-> 所以输入mask分支的mask_features是原始的backbone网络的features,只不过在上面去box分支出来的detections区域进行loss计算;

    def forward(self, features, proposals, targets=None):
losses = {}
# TODO rename x to roi_box_features, if it doesn't increase memory consumption
x, detections, loss_box = self.box(features, proposals, targets)
losses.update(loss_box)
if self.cfg.MODEL.MASK_ON:
mask_features = features
# optimization: during training, if we share the feature extractor between
# the box and the mask heads, then we can reuse the features already computed
if (
self.training
and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR
):
mask_features = x
# During training, self.box() will return the unaltered proposals as "detections"
# this makes the API consistent during training and testing
x, detections, loss_mask = self.mask(mask_features, detections, targets)
losses.update(loss_mask)
return x, detections, losses

->x, detections, loss_box = self.box(features, proposals, targets) fast rcnn的分类与回归部分:

->x = self.feature_extractor(features, proposals)这里的特征提取分roipooling和抽取成roipool_feature,可以和mask分支共享,然后再分(分类+回归,mask)两个loss分支;

    def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets. Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the subsampled proposals
are returned. During testing, the predicted boxlists are returned
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
""" if self.training:
# Faster R-CNN subsamples during training the proposals with a fixed
# positive / negative ratio
with torch.no_grad():
proposals = self.loss_evaluator.subsample(proposals, targets) # extract features that will be fed to the final classifier. The
# feature_extractor generally corresponds to the pooler + heads
x = self.feature_extractor(features, proposals)
# final classifier that converts the features into predictions
class_logits, box_regression = self.predictor(x) if not self.training:
result = self.post_processor((class_logits, box_regression), proposals)
return x, result, {} loss_classifier, loss_box_reg = self.loss_evaluator(
[class_logits], [box_regression]
)
return (
x,
proposals,
dict(loss_classifier=loss_classifier, loss_box_reg=loss_box_reg),
)

->训练的时候每张图选择512个box训练,输出([1024, 81])类别; ([1024, 324])回归坐标81×4=324;

ipdb> x.shape
torch.Size([1024, 1024])
ipdb> proposals
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> class_logits.shape
torch.Size([1024, 81])
ipdb> box_regression
tensor([[ 1.2481e-02, -1.5032e-02, 2.6849e-03, ..., 2.6986e-03,
1.4723e-01, -5.2207e-01],
[-5.7448e-03, -7.5938e-03, -2.6571e-03, ..., 1.3588e-01,
-3.1587e-01, 6.2171e-01],
[-6.6426e-03, -3.4121e-03, -9.5814e-04, ..., -4.7817e-01,
-2.8117e-03, 1.6653e-01],
...,
[-1.1446e-02, -4.6574e-03, -8.0981e-04, ..., -5.0460e-01,
6.2465e-01, -4.1426e-01],
[ 6.0940e-05, -1.2032e-02, -5.0753e-03, ..., 1.0396e+00,
-1.9913e-01, -1.2819e+00],
[-4.9718e-03, -6.6546e-03, -2.5202e-03, ..., 3.9986e-02,
-6.0675e-02, -1.1396e-01]], device='cuda:0', grad_fn=<AddmmBackward>)
ipdb> box_regression.shape
torch.Size([1024, 324])
ipdb> loss_classifier
tensor(0.3894, device='cuda:0', grad_fn=<NllLossBackward>)
ipdb> loss_box_reg
tensor(0.1674, device='cuda:0', grad_fn=<DivBackward0>)

->整体x, detections, loss_box = self.box(features, proposals, targets)输出,x为box和mask分支的特征;选择512个box计算loss并传入mask分支

ipdb> x.shape
torch.Size([1024, 1024])
ipdb> proposals
[BoxList(num_boxes=571, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=1468, image_width=1199, image_height=800, mode=xyxy)]
ipdb> detections
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> loss_box
{'loss_box_reg': tensor(0.1674, device='cuda:0', grad_fn=<DivBackward0>), 'loss_classifier': tensor(0.3894, device='cuda:0', grad_fn=<NllLossBackward>)}

->x, detections, loss_mask = self.mask(mask_features, detections, targets) mask分支:

-> 仅利用检测出来的proposals中有目标的positive_inds;

    def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets. Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the original proposals
are returned. During testing, the predicted boxlists are returned
with the `mask` field set
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
""" if self.training:
# during training, only focus on positive boxes
all_proposals = proposals
proposals, positive_inds = keep_only_positive_boxes(proposals)
if self.training and self.cfg.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR:
x = features
x = x[torch.cat(positive_inds, dim=0)]
else:
x = self.feature_extractor(features, proposals)
mask_logits = self.predictor(x) if not self.training:
result = self.post_processor(mask_logits, proposals)
return x, result, {} loss_mask = self.loss_evaluator(proposals, mask_logits, targets) return x, all_proposals, dict(loss_mask=loss_mask)

-> 变量结果:只把正例进行loss计算,变少很多; 然后pool后的特征维度([171, 256, 14, 14])(由于选的box只有43+128=171)

->训练时,真正有用的返回就是loss_mask;测试的时候返回的是经过后处理的result;

ipdb> all_proposals
[BoxList(num_boxes=512, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=512, image_width=1199, image_height=800, mode=xyxy)]
ipdb> proposals
[BoxList(num_boxes=43, image_width=1201, image_height=800, mode=xyxy), BoxList(num_boxes=128, image_width=1199, image_height=800, mode=xyxy)]
ipdb> positive_inds.shape
*** AttributeError: 'list' object has no attribute 'shape'
ipdb> positive_inds[0].shape
torch.Size([512])
ipdb> x.shape
torch.Size([171, 256, 14, 14])
ipdb> mask_logits.shape
torch.Size([171, 81, 28, 28]) ipdb> targets[0]
BoxList(num_boxes=4, image_width=1201, image_height=800, mode=xyxy)
ipdb> targets[1]
BoxList(num_boxes=35, image_width=1199, image_height=800, mode=xyxy)
ipdb> loss_mask
tensor(0.3287, device='cuda:0', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)

-> 至此真个训练loss完成; 进行迭代...

总结:

1. 在模型中已经很好的区分训练和测试部分,处理后返回的结果也不一样;

2. 后续对一些数据结构,数据细节处理在看看!

maskrcnn_benchmark代码分析(2)的更多相关文章

  1. maskrcnn_benchmark代码分析(1)

    可以先参考:Faster-RCNN代码+理论——1/2 Object Detection and Classification using R-CNNs 使用ipdb调试 try: import ip ...

  2. maskrcnn_benchmark代码分析(3)

    数据结构 数据加载 数据后处理

  3. Android代码分析工具lint学习

    1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...

  4. pmd静态代码分析

    在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...

  5. [Asp.net 5] DependencyInjection项目代码分析-目录

    微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...

  6. [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)

    Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...

  7. 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)

    构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...

  8. STM32启动代码分析 IAR 比较好

    stm32启动代码分析 (2012-06-12 09:43:31) 转载▼     最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...

  9. 常用 Java 静态代码分析工具的分析与比较

    常用 Java 静态代码分析工具的分析与比较 简介: 本文首先介绍了静态代码分析的基 本概念及主要技术,随后分别介绍了现有 4 种主流 Java 静态代码分析工具 (Checkstyle,FindBu ...

随机推荐

  1. 循序渐进学.Net Core Web Api开发系列【8】:访问数据库(基本功能)

    系列目录 循序渐进学.Net Core Web Api开发系列目录 本系列涉及到的源码下载地址:https://github.com/seabluescn/Blog_WebApi 一.概述 本篇讨论如 ...

  2. Home Assistant + 树莓派:强大的智能家居系统 · 设备接入篇

    转载:Home Assistant + 树莓派:强大的智能家居系统 · 设备接入篇 目录 HASS 配置框架 主文件设置 Homebridge 设置 鹬蚌相争? 设备追踪设置 更新日志 作者的话 相信 ...

  3. 什么情况下,会用到fiddler或者charles?

    有的页面,比如设限制的html页面,比如原生页面,只能在手机APP里面查看,无法在电脑浏览器中打开查看,这时候,需要用fiddler抓包来查看返回数据,定位问题.

  4. BZOJ.1034.[ZJOI2008]泡泡堂(贪心)

    题目链接 容易想到田忌赛马.但是是不对的,比如2 3对1 3,按田忌赛马策略会3->1 2->3,但是3->3 2->1显然更优. 而如果按己方最强>=对方最强则开打,也 ...

  5. [TC11326]ImpossibleGame

    [TC11326]ImpossibleGame 题目大意: 一类字符串仅由'A','B','C','D'四种字母组成.对于这样的一个字符串\(S\),可以用以下两种方式之一修改这个字符串: 交换\(S ...

  6. VM 虚拟机网络配置

    VM网络设置,一共有四种模式. 分别是 1:bridge:桥接,直接和真实网卡相连.如果你要让虚拟机也要上网,就必须选这项,并且要配置和真实网卡在同一网段的IP地址. 2:host-only: 仅主机 ...

  7. linux 下安装 RZ SZ命令 以及使用

    对于经常使用Linux系统的人员来说,少不了将本地的文件上传到服务器或者从服务器上下载文件到本地,rz / sz命令很方便的帮我们实现了这个功能,rz是把win的文件上传到linux上    sz是吧 ...

  8. CentOS下多网卡绑定多IP段时导致只有一个会通的问题解决

    原因:Linux默认开启了反向路由检查导致的,比如说外面访问eth0的网卡,而网关在eth1上,又或者从eth0出的流量,而网关在eth1上,此时会检查到网关不在同一个网卡上导致出不去,进不来的问题. ...

  9. mysql slave 主从 指定表 通配符

    slave配置 slave端有可能,只复制部分表,有一些表不需要备份配置如下: 有一些表你可能做水平或则垂直的处理.如果表的前几位一样,就可以用通配符%匹配 replicate-wild-ignore ...

  10. .NET对象的创建、垃圾回收、非托管资源的手动处理

    本篇用来梳理对象的创建.垃圾的回收,以及非托管资源的手动处理. →首先运行应用程序,创建一个Windows进程. →CLR创建一块连续的虚拟地址空间,这个地址空间就是托管堆.而且,这个地址空间最初并没 ...