https://applenob.github.io/em.html

EM算法总结

在概率模型中,最常用的模型参数估计方法应该就是最大似然法

EM算法本质上也是最大似然,它是针对模型中存在隐变量的情况的最大似然

下面通过两个例子引入。

没有隐变量的硬币模型

假设有两个硬币,AA和BB,这两个硬币具体材质未知,即抛硬币的结果是head的概率不一定是50%。

在这个实验中,我们每次拿其中一个硬币,抛10次,统计结果。

实验的目标是统计AA和BB的head朝上的概率,即估计θ̂ Aθ^A和θ̂ Bθ^B。

对每一枚硬币来说,使用极大似然法来估计它的参数:

假设硬币AA正面朝上的次数是nAhnhA,反面朝上的次数是:nAtntA。

似然函数:L(θA)=(θA)nAh(1−θA)nAtL(θA)=(θA)nhA(1−θA)ntA。

对数似然函数:logL(θA)=nAh⋅log(θA)+nAt⋅log(1−θA)logL(θA)=nhA⋅log(θA)+ntA⋅log(1−θA)。

θ̂ A=argmaxθAlogL(θA)θ^A=argmaxθAlogL(θA) 。

对参数求偏导:∂logL(θA)∂θA=nAhθA−nAt1−θA∂logL(θA)∂θA=nhAθA−ntA1−θA。

令上式为00,解得:θ̂ A=nAhnAh+nAtθ^A=nhAnhA+ntA。

即θ̂ A=numberofheadsusingcoinAtotalnumberofflipsusingcoinAθ^A=numberofheadsusingcoinAtotalnumberofflipsusingcoinA。

 

有隐变量的硬币模型

这个问题是上一个问题的困难版,即给出一系列统计的实验,但不告诉你某组实验采用的是哪枚硬币,即某组实验采用哪枚硬币成了一个隐变量

这里引入EM算法的思路

  • 1.先随机给出模型参数的估计,以初始化模型参数。
  • 2.根据之前模型参数的估计,和观测数据,计算隐变量的分布
  • 3.根据隐变量的分布,求联合分布的对数关于隐变量分布的期望
  • 4.重新估计模型参数,这次最大化的不是似然函数,而是第3步求的期望

一般教科书会把EM算法分成两步:E步和M步,即求期望和最大化期望。

E步对应上面2,3;M对应4。

 

EM算法

输入:观测变量数据YY,隐变量数据ZZ,联合分布P(Y,Z|θ)P(Y,Z|θ),条件分布P(Z|Y,θ)P(Z|Y,θ);

输出:模型参数θθ。

  • 1.选择参数的初始值θ(0)θ(0),开始迭代;
  • 在第i+1i+1次迭代:
    • 2.E步:Q(θ,θ(i))=∑zlogP(Y,Z|θ)P(Z|Y,θ(i))Q(θ,θ(i))=∑zlogP(Y,Z|θ)P(Z|Y,θ(i))
    • 3.M步:Q(i+1)=argmaxθQ(θ,θ(i))Q(i+1)=argmaxθQ(θ,θ(i))
  • 4.重复2,3直至收敛。

转:EM算法总结的更多相关文章

  1. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  2. K-Means聚类和EM算法复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内 ...

  3. EM算法总结

    EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用 ...

  4. GMM的EM算法实现

    转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral c ...

  5. EM算法(4):EM算法证明

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过 ...

  6. EM算法(3):EM算法运用

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Exp ...

  7. EM算法(2):GMM训练算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...

  8. EM算法(1):K-means 算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-mean ...

  9. [MCSM]随机搜索和EM算法

    1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书 ...

  10. EM算法

    EM算法的推导

随机推荐

  1. 9、Redis处理过期keys的机制

    写在前面的话:读书破万卷,编码如有神 -------------------------------------------------------------------- 1.Redis处理过期k ...

  2. haskell学习资料

    Haskell基础语法 Real World Haskell 中文版 Haskell趣学指南

  3. TQ2440开发板存储器

    TX2440A与TQ2440A开发板使用核心板完全相同 有过51单片基础的同学应该都会看懂下图,先看下图,对实验板存储器分布有一个整体印象: s3c2440存储器概述: 1.S3C2440A的存储器管 ...

  4. Revit API改变风管及管件尺寸

    start , , )) < , , -)) < , dHeight = ;             ConnectorSetIterator csi = fi.MEPModel.Conn ...

  5. 清华梦的粉碎—写给清华大学的退学申请(转自王垠Blog)

    清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我知 ...

  6. 如何修改Mac截屏保存路径

    MAC OS X系统默认的截图路径是桌面文件夹,默认的截图格式是 PNG 图片格式,如何自定义设置呢? 截图保存路径 打开终端(Terminal)并输入如下命令: defaults write com ...

  7. sendto 和 recvfrom 函数

    sendto recvfrom

  8. Weblogic跨域session冲突解决办法

    一.现象: 在WebLogic中,有两个不同域A(端口:9000)和B(端口:8000),应用CA在域A中,应用CB在域B中,进行如下操作: 1.先登录应用CA,再登录应用CB,然后,切换回应用CA, ...

  9. JAVA设计模式-设计原则

    6大原则: 单一职责原则 里氏替换原则 依赖倒置原则 接口隔离原则 迪米特法则 开闭原则 一.单一职责原则 定义:应该有且仅有一个原因引起类的变更 带来的好处: 类的复杂性降低,实现什么职责有清晰明确 ...

  10. SpringBoot扫描包提示找不到mapper的问题

    SpringBoot扫描包问题 报错信息:Consider defining a bean of type in your configuration 方法一: 使用注解 @ComponentScan ...