Spark-Sql之DataFrame实战详解
1、DataFrame简介:
在Spark中,DataFrame是一种以RDD为基础的分布式数据据集,类似于传统数据库听二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。
类似这样的
root
|-- age: long (nullable = true)
|-- id: long (nullable = true)
|-- name: string (nullable = true)
2、准备测试结构化数据集
people.json
{"id":1, "name":"Ganymede", "age":32}
{"id":2, "name":"Lilei", "age":19}
{"id":3, "name":"Lily", "age":25}
{"id":4, "name":"Hanmeimei", "age":25}
{"id":5, "name":"Lucy", "age":37}
{"id":6, "name":"Tom", "age":27}
3、通过编程方式理解DataFrame
1) 通过DataFrame的API来操作数据
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Level
import org.apache.log4j.Logger object DataFrameTest {
def main(args: Array[String]): Unit = {
//日志显示级别
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR) //初始化
val conf = new SparkConf().setAppName("DataFrameTest")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df = sqlContext.read.json("people.json") //查看df中的数据
df.show()
//查看Schema
df.printSchema()
//查看某个字段
df.select("name").show()
//查看多个字段,plus为加上某值
df.select(df.col("name"), df.col("age").plus(1)).show()
//过滤某个字段的值
df.filter(df.col("age").gt(25)).show()
//count group 某个字段的值
df.groupBy("age").count().show() //foreach 处理各字段返回值
df.select(df.col("id"), df.col("name"), df.col("age")).foreach { x =>
{
//通过下标获取数据
println("col1: " + x.get(0) + ", col2: " + "name: " + x.get(2) + ", col3: " + x.get(2))
}
} //foreachPartition 处理各字段返回值,生产中常用的方式
df.select(df.col("id"), df.col("name"), df.col("age")).foreachPartition { iterator =>
iterator.foreach(x => {
//通过字段名获取数据
println("id: " + x.getAs("id") + ", age: " + "name: " + x.getAs("name") + ", age: " + x.getAs("age")) })
} }
}
2)通过注册表,操作sql的方式来操作数据
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Level
import org.apache.log4j.Logger /**
* @author Administrator
*/
object DataFrameTest2 {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR);
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR); val conf = new SparkConf().setAppName("DataFrameTest2")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df = sqlContext.read.json("people.json") df.registerTempTable("people") df.show();
df.printSchema(); //查看某个字段
sqlContext.sql("select name from people ").show()
//查看多个字段
sqlContext.sql("select name,age+1 from people ").show()
//过滤某个字段的值
sqlContext.sql("select age from people where age>=25").show()
//count group 某个字段的值
sqlContext.sql("select age,count(*) cnt from people group by age").show() //foreach 处理各字段返回值
sqlContext.sql("select id,name,age from people ").foreach { x =>
{
//通过下标获取数据
println("col1: " + x.get(0) + ", col2: " + "name: " + x.get(2) + ", col3: " + x.get(2))
}
} //foreachPartition 处理各字段返回值,生产中常用的方式
sqlContext.sql("select id,name,age from people ").foreachPartition { iterator =>
iterator.foreach(x => {
//通过字段名获取数据
println("id: " + x.getAs("id") + ", age: " + "name: " + x.getAs("name") + ", age: " + x.getAs("age")) })
} }
}
两种方式运行结果是一样的,第一种适合程序员,第二种适合熟悉sql的人员。
4、对于非结构化的数据
people.txt
1,Ganymede,32
2, Lilei, 19
3, Lily, 25
4, Hanmeimei, 25
5, Lucy, 37
6, wcc, 4
1) 通过字段反射来映射注册临时表
import org.apache.spark.sql.SQLContext import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.Row /**
* @author Administrator
*/
object DataFrameTest3 {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR);
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR); val conf = new SparkConf().setAppName("DataFrameTest3")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val people = sc.textFile("people.txt") val peopleRowRDD = people.map { x => x.split(",") }.map { data =>
{
val id = data(0).trim().toInt
val name = data(1).trim()
val age = data(2).trim().toInt
Row(id, name, age)
}
} val structType = StructType(Array(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true))); val df = sqlContext.createDataFrame(peopleRowRDD, structType); df.registerTempTable("people") df.show()
df.printSchema() }
}
2) 通过case class反射来映射注册临时表
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.Row /**
* @author Administrator
*/
object DataFrameTest4 {
case class People(id: Int, name: String, age: Int)
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR);
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR); val conf = new SparkConf().setAppName("DataFrameTest4")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val people = sc.textFile("people.txt") val peopleRDD = people.map { x => x.split(",") }.map { data =>
{
People(data(0).trim().toInt, data(1).trim(), data(2).trim().toInt)
}
} //这里需要隐式转换一把
import sqlContext.implicits._
val df = peopleRDD.toDF()
df.registerTempTable("people") df.show()
df.printSchema() }
}
5、总结:
Spark SQL是Spark中的一个模块,主要用于进行结构化数据的处理。它提供的最核心的编程抽象,就是DataFrame。同时Spark SQL还可以作为分布式的SQL查询引擎。Spark SQL最重要的功能之一,就是从Hive中查询数据。
DataFrame,可以理解为是,以列的形式组织的,分布式的数据集合。它其实和关系型数据库中的表非常类似,但是底层做了很多的优化。DataFrame可以通过很多来源进行构建,包括:结构化的数据文件,Hive中的表,外部的关系型数据库,以及RDD。
Spark-Sql之DataFrame实战详解的更多相关文章
- Spark SQL底层执行流程详解
本文目录 一.Apache Spark 二.Spark SQL发展历程 三.Spark SQL底层执行原理 四.Catalyst 的两大优化 一.Apache Spark Apache Spark是用 ...
- Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Spark SQL知识点与实战
Spark SQL概述 1.什么是Spark SQL Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块. 与基本的Spark RDD API不同,Sp ...
- NHibernate实战详解(二)映射配置与应用
关于NHibernate的资料本身就不多,中文的就更少了,好在有一些翻译文章含金量很高,另外NHibernate与Hibernate的使用方式可谓神似,所以也有不少经验可以去参考Hibernate. ...
- Scala 深入浅出实战经典 第78讲:Type与Class实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第64讲:Scala中隐式对象代码实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第58讲:Scala中Abstract Types实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第55讲:Scala中Infix Type实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
随机推荐
- MongoDB内存管理机制
目前,MongoDB使用的是内存映射存储引擎,它会把磁盘IO操作转换成内存操作,如果是读操作,内存中的数据起到缓存的作用,如果是写操作,内存还可以把随机的写操作转换成顺序的写操作,总之可以大幅度提升性 ...
- eclipse与SVN 结合(删除SVN中已经上传的问题)
问题是: 我有一个文件已经上传到了SVN ,但是我想把这个在SVN上的目录删除掉? 解决方法如下: 1,第一步,先在本地删除所有的你需要删除的文件: 2,第二步,选择当前的项目右键“Team”—“Up ...
- Android开发之底部导航栏标准
以下是封装的库源码: package com.example.oldtab; import java.util.ArrayList; import android.content.res.Resour ...
- springMVC自定义方法属性解析器
使用场景例子: 用户登陆系统一般会往Session里放置一个VO对象,然后在controller里会来获取用户的userId等信息. 之前的写法是:@SessionAttributes配合@Model ...
- Redis从入门到精通:初级篇(转)
原文链接:http://www.cnblogs.com/xrq730/p/8890896.html,转载请注明出处,谢谢 Redis从入门到精通:初级篇 平时陆陆续续看了不少Redis的文章了,工作中 ...
- FTP下载工具
开源的FTP下载工具,FTP搬运工.... 01.FileZilla_3.21.0_win64 官方地址: https://filezilla-project.org/ 下载地址: http://pa ...
- Libevent官方代码样例学习(二)
连接监听器: 接收TCP连接请求 evconnlistener机制用于监听并接受TCP连接请求. 这些方法在event2/listener.h中声明, 在Libevent 2.0.2-alpha之后的 ...
- rac安装_grid安装校验报错之grid未建立信任关系
原创作品,出自 "深蓝的blog" 博客,欢迎转载,转载时请务必注明下面出处,否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlo ...
- Swift 中的闭包与 C 和 Objective-C中的 blocks 以及其它一些编程语言中的 lambdas 比較类似。
闭包是功能性自包括模块,能够在代码中被传递和使用. Swift 中的闭包与 C 和 Objective-C中的 blocks 以及其它一些编程语言中的 lambdas 比較相似. 闭包能够 捕获 和 ...
- data1是字符串?需要加上引号
07-22 15:55:29.832: E/AndroidRuntime(23914): FATAL EXCEPTION: main 07-22 15:55:29.832: E/AndroidRunt ...