大意:给定树, 每个点有颜色, 一个合法的边集要满足删除这些边后, 每个连通块内颜色仅有一种, 求所有合法边集的个数

$f[x][0/1]$表示子树$x$中是否还有与$x$连通的颜色

对于每种颜色已经确定了一个连通块, 连通块内部一定不能断边, 有转移

$$f[x][1]=\prod (f[y][0]+f[y][1]),f[x][0]=0$$

能断边的部分只能为不同颜色连通块间的无色结点, 有转移

$$f[x][0]=\prod (f[y][0]+f[y][1]), f[x][1]=\sum\limits_y (f[y][1]\prod\limits_{z!=y}(f[z][0]+f[z][1])) $$

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
//head
#ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 111;
#endif int n, k;
vector<int> g[N], q;
int col[N], c[N], cnt[N];
int f[N][2], prod[N]; void dfs(int x, int fa) {
cnt[x] = col[x]>0;
for (int y:g[x]) if (y!=fa) {
dfs(y,x);
if (!col[x]) col[x]=col[y];
else if (col[y]&&col[x]!=col[y]) {
puts("0"), exit(0);
}
cnt[x] += cnt[y];
}
q.clear();
for (int y:g[x]) if (y!=fa) q.pb(y);
prod[0] = 1;
int sz = q.size();
REP(i,0,sz-1) {
int y = q[i];
prod[i+1]=(ll)prod[i]*(f[y][0]+f[y][1])%P;
}
if (col[x]) f[x][1]=prod[sz];
else {
f[x][0]=prod[sz];
int tmp = 1;
PER(i,0,sz-1) {
int y = q[i];
f[x][1] = (f[x][1]+(ll)tmp*f[y][1]%P*prod[i]%P)%P;
tmp = (ll)tmp*(f[y][0]+f[y][1])%P;
}
}
if (c[col[x]]==cnt[x]) cnt[x]=col[x]=0;
} int main() {
scanf("%d%d", &n, &k);
REP(i,1,n) scanf("%d", col+i);
REP(i,1,n) ++c[col[i]];
REP(i,2,n) {
int u, v;
scanf("%d%d", &u, &v);
g[u].pb(v),g[v].pb(u);
}
dfs(1,0);
printf("%d\n", f[1][1]);
}

Tree Cutting (Hard Version) CodeForces - 1118F2 (树形DP,计数)的更多相关文章

  1. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

  2. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  3. Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp

    题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...

  4. 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目: Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There ar ...

  5. Codeforces Round #277 (Div. 2)D(树形DP计数类)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. CodeForces 219D 树形DP

    D. Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes i ...

  7. 解题:CF1118F2 Tree Cutting (Hard Version)

    题面 好题不问Div(这是Div3最后一题,不得不说Mike真是强=.=) 首先同一个颜色的点的LCA要和它们在一个划分出的块里,那么我们先按颜色把所有点到它们的LCA的路径涂色,如果这个过程中出现了 ...

  8. Codeforces 1153D 树形DP

    题意:有一个游戏,规则如下:每个点有一个标号,为max或min, max是指这个点的值是所有子节点中值最大的那一个,min同理.问如何给这颗树的叶子节点赋值,可以让这棵树的根节点值最大. 思路:很明显 ...

  9. Codeforces 1088E 树形dp+思维

    比赛的时候看到题意没多想就放弃了.结果最后D也没做出来,还掉分了,所以还是题目做的太少,人太菜. 回到正题: 题意:一棵树,点带权值,然后求k个子连通块,使得k个连通块内所有的点权值相加作为分子除以k ...

随机推荐

  1. python中的对象(三)

    一.python对象 python使用对象模型来存储数据.构造任何类型的值都是一个对象. 所有python对象都拥有三个特性:身份.类型.值 身份:每个对象都有一个唯一的身份标识自己,任何对象的身份可 ...

  2. IP分片丢失重传

    尽管IP分片看起来是是透明的,但有一点让人不想使用它:即使只丢失一片数据也要重传整个数据报.为什么会发生这种情况呢?     因为IP层本身没有超时重传的机制——由更高层来负责超时和重传(TCP有超时 ...

  3. CentOS 7 安装OpenCV

    CentOS 7 安装OpenCV步骤如下: 1.在CentOS 7命令行中直接在线安装: yum  install  numpy  opencv* 2.安装完成后进行全盘搜索:find  /  -n ...

  4. linux通过rpm和yum安装包

    1.rpm包的安装过程:进入rpm包的所在目录,通过rpm -ivh 包名安装,rpm安装无法解决依赖关系 2.yum安装过程:读取/etc/yum.repo/下配置文件中的baseurl地址,找到该 ...

  5. ssh连接linux服务器不断开- "Write failed: Broken pipe"

    我自己用阿里云的服务器的时候,发现ssh连上以后,一会不用就断掉了,非常不方便,服务端的系统是ubuntu. 查了些东西,原来可以去配置服务端的sshd,或者客户端的ssh,就行了. 1,配置服务器端 ...

  6. 20165211 预备作业3 Linux安装与学习

    20165211 预备作业3 Linux安装与学习 1. Linux安装 涉及软件:VirtualBox,Ubuntu 参考教程:基于VirtualBox安装Ubuntu图文教程 安装过程的问题 在安 ...

  7. keil_4/MDK各种数据类型占用的字节数

    笔者正在学习uCOS-II,移植到ARM时考虑到数据类型的定义,但对于Keil MDK编译器的数据类型定义还是很模糊,主要就是区分不了short int.int.long 和long int占用多少字 ...

  8. fiddler配置及使用教程

    本文基于Fiddler4讲解基本使用 fiddler抓包原理 注意:Fiddler 是以代理web服务器的形式工作的,它使用代理地址:127.0.0.1,端口:8888.当Fiddler退出的时候它会 ...

  9. 高通平台启动log概述(PBL log、sbl1 log、kernel log)【转】

    本文转自:https://blog.csdn.net/RadianceBlau/article/details/78416776?utm_source=blogxgwz9 高通平台启动log概述(PB ...

  10. 微内核VS宏内核【转】

    本文转载自:https://segmentfault.com/a/1190000002711544 内核按照体系结构分为两类 : 微内核(microkernel)与宏内核(macrokernel). ...