机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。

不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。

问题是,真有个“大伙儿”吗?就不会是“两伙儿”、“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢?

很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。


第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。

现在的“机器学习研究者”可能很少有人读过1983年出的“Machine Learning: An Artificial Intelligence Approach”这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例 如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S. Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G. Carbonell(此君曾是Springer的LNAI的总编)、Tom Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有 不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。

人工智能的研究从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,是有一条自然、清晰的脉络。人工智能出身的机器学习研究者,绝大部分 是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手 段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。

这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研 究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是 依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道“问题”在哪里。一旦“问题”清楚了,解决起来可能并不 困难。

第二个community,是把机器学习看作“应用统计学”的一个群体,这群人的主体是统计学家。

和纯数学相比,统计学不太“干净”,不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。

慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大 量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变 成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。

这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。

两个群体的文化和价值观完全不同。第一个群体认为好的工作,第二个群体可能觉得没有技术含量,但第一个群体可能恰恰认为,简单的才好,正因为很好地 抓住了问题本质,所以问题变得容易解决。第二个群体欣赏的工作,第一个群体可能觉得是故弄玄虚,看不出他想解决什么人工智能问题,根本就不是在搞人工智 能、搞计算机,但别人本来也没说自己是在“搞人工智能”、“搞计算机”,本来就不是在为人工智能做研究。

两个群体各有其存在的意义,应该宽容一点,不需要去互较什么短长。但是既然顶着Machine Learning这个帽子的不是“一伙儿”,而是“两伙儿”,那么要“跟进”的新人就要谨慎了,先搞清楚自己更喜欢“哪伙儿”。

引两位著名学者的话结尾,一位是人工智能大奖得主、一位是统计学习大家,名字我不说了,省得惹麻烦:

“I do not come to AI to do statistics”

“I do not have interest in AI”

 

 

原文地址:

http://hi.baidu.com/giqguarzqdbadpq/item/8d41e5160121a3ff65eabf8d

[转] 机器学习是什么——周志华的更多相关文章

  1. (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树

    CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...

  2. Reading | 《机器学习》(周志华)(未完待续)

    目录 I. 大师对人工智能和机器学习的看法 II. Introduction A. What is Machine Learning 什么是机器学习 B. Basic terms 基础术语 C. In ...

  3. 【Todo】【读书笔记】机器学习-周志华

    书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...

  4. 机器学习周志华 pdf统计学习人工智能资料下载

    周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航,  下载地址: https://u12 ...

  5. 《AlphaGo世纪对决》与周志华《机器学习》观后感

    这两天看了<AlphaGo世纪对决>纪录片与南大周志华老师的<机器学习>,想谈谈对人工智能的感想. 首先概述一下视频的内容吧,AlphaGo与李世石对战的过程大家都有基本的了解 ...

  6. 周志华-机器学习西瓜书-第三章习题3.5 LDA

    本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据 首先介绍LDA算法流程: LDA的一个手工计算数学实例: 课后习题的代码: # coding ...

  7. 周志华《机器学习》高清电子书pdf分享

    周志华<机器学习>高清电子书pdf下载地址 下载地址1:https://545c.com/file/20525574-415455837 下载地址2: https://pan.baidu. ...

  8. 偶尔转帖:AI会议的总结(by南大周志华)

    偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier ...

  9. 【转载】 AI会议的总结(by南大周志华)

    原文地址: https://blog.csdn.net/LiFeitengup/article/details/8441054 最近在查找期刊会议级别的时候发现这篇博客,应该是2012年之前的内容,现 ...

随机推荐

  1. com.mysql.jdbc.PacketTooBigException: Packet for query is too large (1169 > 1024)

    ### Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (1169 > 1024). You ...

  2. Redis命令汇总

    设置服务后台启动 cd /usr/local/redisview redis.conf 将daemonize no改为 daemonize yes保存退出 启动:./reids-server redi ...

  3. [转]Java 变量和常量

    变量和常量 在程序中存在大量的数据来代表程序的状态,其中有些数据在程序的运行过程中值会发生改变,有些数据在程序运行过程中值不能发生改变,这些数据在程序中分别被叫做变量和常量. 在实际的程序中,可以根据 ...

  4. css 温故而知新 字体方向 将文字竖着显示

    writing-mode: vertical-rl;

  5. 温故而知新 Ajax 的新坑 dataType: 'json'

    为了方便实验,我随便捏造了一个json数据,然后放在php中输出. 请求明明是200,json数据也正确,但ajax就是不执行success回调? 原因是 dataType: 'json', 导致的. ...

  6. C#基础第一天-作业答案

    题一答案: Console.WriteLine("请输入a"); int a = Convert.ToInt32(Console.ReadLine()); Console.Writ ...

  7. 是时候用PerconaDB替换MySQL了

    Percona数据库服务器是MySQL的增强版,替代MySQL并不复杂. 一.PerconaDB的特性 1)查询速度更快,数据的一致性更好 2)服务器运行及其稳定 3)可以延迟分片,或者避免分片 4) ...

  8. Windows Mobile入门

    转自 http://www.cnblogs.com/peterzb/archive/2009/05/12/1455256.html [准备篇]        最近安排做手机视频监控方面开发,这个对我来 ...

  9. Atitit js es5 es6新特性 attilax总结

    Atitit js es5 es6新特性 attilax总结 1.1. JavaScript发展时间轴:1 1.2. 以下是ES6排名前十的最佳特性列表(排名不分先后):1 1.3. Es6 支持情况 ...

  10. Vue2 原理解析

    现代主流框架均使用一种数据=>视图的方式,隐藏了繁琐的dom操作,采用了声明式编程(Declarative Programming)替代了过去的类jquery的命令式编程(Imperative ...