from NumPy import *

函数形式: tile(A,rep)

功能:重复A的各个维度

参数类型:

- A: Array类的都可以

- rep:A沿着各个维度重复的次数

这个英文单词的本意是:贴瓷砖,还挺形象的。

举例:

tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次

输出[17,29,17,29]

tile([29,17],(3,5))

此时的(3,5)和[3,5]是相同的效果。

结果是3组,每组重复5次,也可以理解为二维表,3行,5列。先分3组(重复3次),每组重复5次。

array([[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17]])

tile([29,17],[3,5,7])

结果是3组,每组一个二维表,每个二维表5行,7列,可以理解为三维表

array([[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17, 29, 17]]])

tile([29,17],[3,5,7,4])

结果是4组,怎样理解?我也不知道,这已经超过了人类空间的认知。

依次分组,先分3组重复,然后分5组重复,然后分7组,最后重复4次。

如果5维会怎样?也是继续按组重复下去。先分5组,用中括号分隔。

array([[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]],

[[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]],

[[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17],

[29, 17, 29, 17, 29, 17, 29, 17]]]])

Python模块NumPy中的tile(A,rep) 函数的更多相关文章

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. Mathab和Python的numpy中的数组维度

    Matlab和Python的numpy在维度索引方面的不同点: 1.索引的起始点不同:Matlab起始位置的索引为1,Python为0. 2.索引的括号不同:Matlab中元素可以通过小括号表示索引, ...

  3. python和numpy中sum()函数的异同

    转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...

  4. numpy中的tile函数

    tile()函数可以很方便的生成多维数组.它有两个参数,第一个数是原始数组;第二个表示如何来生成,第一个数字表示生成几行,第二个表示每行有多少个原始数组(如果只写一个数字,那么就默认是一行). fro ...

  5. python模块collections中namedtuple()的理解

    Python中存储系列数据,比较常见的数据类型有list,除此之外,还有tuple数据类型.相比与list,tuple中的元素不可修改,在映射中可以当键使用.tuple元组的item只能通过index ...

  6. python模块win32com中的early-bind与lazy-bind(以Autocad为例)

    1.什么是Lazy-bind模式,Early-bind模式? win32com中,Lazy-bind 模式指的是程序事先不知道对象的任何方法和属性,当对象属性,方法被调用时,程序才向对象发出一个询问( ...

  7. Python模块包中__init__.py文件的作用

    转载自:http://hi.baidu.com/tjuer/item/ba37ac4ce7482a0f6dc2f08b 模块包: 包通常总是一个目录,目录下为首的一个文件便是 __init__.py. ...

  8. python类库numpy中常见函数的用法

    1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的 ...

  9. 【python】Numpy中stack(),hstack(),vstack()函数详解

    转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...

随机推荐

  1. c++友元函數---16

    原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ 有些情况下,允许特定的非成员函数访问一个类的私有成员,同时仍阻止一般的访问,这是很方便做到的.例 ...

  2. TCP拥塞控制算法纵横谈-Illinois和YeAH

    周五晚上.终于下了雨.所以也终于能够乱七八糟多写点松散的东西了... 方法论问题. 这个题目太大以至于内容和题目的关联看起来有失偏颇.只是也无所谓,既然被人以为"没有方法论"而歧视 ...

  3. Jquery/js submit()无法提交问题

    有朋友可能会直接利用js或jquery来提交数据而不是使用表单直接提交了,小编来给大家介绍小编碰到的一个问题就是 submit()无法提交,下面我们来看解决办法与原因分析. jquery无法提交  代 ...

  4. Linux下profile与bashrc的区别

    /etc/profile./etc/bashrc.~/.bash_profile.~/.bashrc很容易混淆,他们之间有什么区别?它们的作用到底是什么?/etc/profile: 用来设置系统环境参 ...

  5. 关于GDI+的一些使用基础设置

    一.新建一个MFC的单文档工程,例如工程名字叫GDIPLUSTEST1. 二.在工程的stdafx.h头文件中添加入 #include "gdiplus.h" using name ...

  6. Lua中的closure(闭合函数)

    词法域:若将一个函数写在另一个函数之内,那么这个位于内部的函数便可以访问外部函数中的局部变量,这项特征称之为“词法域”. 例:假设有一个学生姓名的列表和一个对应于没个姓名的年级列表,需要根据每个学生的 ...

  7. 剑指offer面试题6:重建二叉树

    1.题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树. public class Solution { public TreeNode reConstructBinaryTree(int ...

  8. JavaScript 简介--对javascript的初识,最基础的了解

    一.javascript的介绍 JavaScript是网景(Netscape)公司开发的一种基于客户端浏览器.面向(基于)对象.事件驱动式的网页脚本语言.JavaScript语言的前身叫作Livesc ...

  9. 【盘古分词】Lucene.Net 盘古分词 实现公众号智能自动回复

    盘古分词是一个基于 .net framework 的中英文分词组件.主要功能 中文未登录词识别 盘古分词可以对一些不在字典中的未登录词自动识别 词频优先 盘古分词可以根据词频来解决分词的歧义问题 多元 ...

  10. 10分钟10行代码开发APP(delphi 应用案例)

    总结一下用到的知识(开发环境安装配置不计算在内): 第六章  使用不同风格的按钮: 第十七章  让布局适应不同大小与方向的窗体: 第二十五章 使用 dbExpress访问 InterBase ToGo ...