sklearn学习_01
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 29 11:05:52 2017
机器学习之sklearn
@author: den
"""
# 导入数据集
from sklearn import datasets
# 进行交叉验证
from sklearn.cross_validation import train_test_split
# 导入标准化尺度
from sklearn.preprocessing import StandardScaler
# 导入感知机算法
from sklearn.linear_model import Perceptron
# 计算分类的准确率
from sklearn.metrics import accuracy_score # 加载数据
iris = datasets.load_iris()
# 样本的后两位特征
X = iris.data[:,[2,3]]
# 目标类别
y = iris.target
# 获取30%的测试集,70%的训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 标准化操作,训练集和测试集使用相同的标准化
sc = StandardScaler()
# 估算每个特征的平均值和标准差
sc.fit(X_train)
# 使用同样的均值和标准差归一化训练集和测试集
sc.transform(X_train)
sc.transform(X_test) # 获得ppn对象
ppn = Perceptron(n_iter=40, eta0=0.5)
# 拟合
ppn.fit(X_train, y_train)
# 预测
y_pred = ppn.predict(X_test)
# 打印错分率
print ('错分样本的个数为:%d' % (y_test != y_pred).sum())
# 计算准确率
print ('模型的准确率为:%.2f' % accuracy_score(y_test, y_pred))
sklearn学习_01的更多相关文章
- C++基础学习_01
C++基础学习_01 基础知识:1.命名空间,2.IO流(输入输入),3.参数缺省,4.函数重载 1.命名空间 作用:对标识符的名称进行本地化,避免命名冲突 定义:namaspace space_na ...
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- sklearn学习总结(超全面)
https://blog.csdn.net/fuqiuai/article/details/79495865 前言sklearn想必不用我多介绍了,一句话,她是机器学习领域中最知名的python模块之 ...
- sklearn学习 第一篇:knn分类
K临近分类是一种监督式的分类方法,首先根据已标记的数据对模型进行训练,然后根据模型对新的数据点进行预测,预测新数据点的标签(label),也就是该数据所属的分类. 一,kNN算法的逻辑 kNN算法的核 ...
- sklearn 学习 第一篇:分类
分类属于监督学习算法,是指根据已有的数据和标签(分类)进行学习,预测未知数据的标签.分类问题的目标是预测数据的类别标签(class label),可以把分类问题划分为二分类和多分类问题.二分类是指在两 ...
- SKlearn | 学习总结
1 简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法 ...
- sklearn学习笔记3
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...
- sklearn学习笔记2
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...
- sklearn学习笔记1
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...
随机推荐
- 给一个由n-1个整数组成的未排序的序列,其元素都是1~n中的不同的整数。如何在线性时间复杂度内寻找序列中缺失的整数
思路分析:尼玛这不就是等差数列么.首先将该n-1个整数相加,得到sum,然后用(1+n)n/2减去sum,得到的差即为缺失的整数.因为1~n一共n个数,n个数的和为(1+n)n/2,而未排序数列的和为 ...
- Nexus5 电信3G保留数据和Root升级Android 6.0
前提: A 备份手机重要数据,安全第一 B 进入twrp recovery 备份EFS,建议最好拷贝到电脑上(如果没有twrp,则需要先刷twrp,具体指令请看下面步骤第10条) C 因为Androi ...
- Eclipse Maven 配置setting.xml 的镜像远程仓库
1.在.m2中新建settings.xml文件 1.window-->Preferences-->Maven-->User Settings 3.点击open file 编辑将远程仓 ...
- PHP代码审计笔记--URL跳转漏洞
0x01 url任意跳转 未做任何限制,传入任何网址即可进行跳转. 漏洞示例代码: <?php $redirect_url = $_GET['url']; header("Locati ...
- TCPdump指定时间或者指定大小进行循环抓取报文
背景:我们用tcpdump工具循环抓取网卡上的报文,我们会遇到如下情况: 1. 抓取报文后隔指定的时间保存一次: 2. 抓取报文后达到指定的大小保存一次: 本文就这两种情况给出tcpdump的使用方法 ...
- phpQuery的用法
一.phpQuery的hello word! 下面简单举例: include 'phpQuery.php'; phpQuery::newDocumentFile('http://www.phper.o ...
- 【整理】LINUX下使用CMAKE安装MYSQL
原文地址:http://www.cppblog.com/issay789/archive/2013/01/05/196967.html 一.安装 m4 下载地址: http://files.w3pc. ...
- UI设计中的高保真和低保真
低保真一般用Axure Rp产出,高保真分两种,带交互的或不带交互的.不带交互的高保真直接根据低保真用PS产出即可.带交互的,需要 PS产出后,再切图,再使用Axure RP与低保真结合产出高保真. ...
- javascript取querystring,存储为hash
function getUrlVars() { var vars = [], hash; var hashes = window.location.href.slice(window.location ...
- SpringMVC温故知新
1. SpringMVC流程简记 (1) 用户发送请求至前端控制器DispatcherServlet (2) DispatcherServlet收到请求调用HandlerMapping处理器映射器 ( ...