题目大意:

给一颗树,1号节点已经被染黑,其余是白的,两个人轮流操作,一开始B在1号节点,A选择k个点染黑,然后B走一步,如果B能走到A没染的节点则B胜,否则当A染完全部的点时,A胜。求能让A获胜的最小的k

小的k能获胜大的k就一定能获胜,因此答案具有单调性,可以二分答案。

那么每次二分的答案怎么验证?

树形DP,设f[i]表示在B没走到以i为根的子树中时,需要预先在这棵子树中染色的节点数。

f[x]=max(0,∑f[to[i]]+son[x]-k),其中to[i]代表x的子节点,son[x]代表x的子节点数。

每次DP后只要判断f[1]==0就行了。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[300010];
int to[600010];
int next[600010];
int ans;
int tot;
int f[300010];
int n;
int x,y;
int mid;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
int sum=0;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x);
sum+=f[to[i]]+1;
}
}
f[x]=max(0,sum-mid);
}
bool check()
{
memset(f,0,sizeof(f));
dfs(1,0);
if(f[1]==0)
{
return true;
}
return false;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
int l=0;
int r=n+1;
while(l<=r)
{
mid=(l+r)>>1;
if(check()==true)
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
printf("%d",ans);
}

BZOJ3420[POI2013]Triumphal arch&BZOJ5174[Jsoi2013]哈利波特与死亡圣器——树形DP+二分答案的更多相关文章

  1. 【bzoj5174】[Jsoi2013]哈利波特与死亡圣器 二分+树形dp

    题目描述 给你一棵以1为根的有根树,初始除了1号点为黑色外其余点均为白色.Bob初始在1号点.每次Alice将其中至多k个点染黑,然后Bob移动到任意一个相邻节点,重复这个过程.求最小的k,使得无论B ...

  2. 「JSOI2013」哈利波特和死亡圣器

    「JSOI2013」哈利波特和死亡圣器 传送门 首先二分,这没什么好说的. 然后就成了一个恒成立问题,就是说我们需要满足最坏情况下的需求. 那么显然在最坏情况下伏地魔是不会走回头路的 因为这显然是白给 ...

  3. [bzoj3420]Poi2013 Triumphal arch_树形dp_二分

    Triumphal arch 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=3420 数据范围:略. 题解: 首先,发现$ k $具有单调性,我们 ...

  4. BZOJ 3420: Poi2013 Triumphal arch

    二分答案 第二个人不会走回头路 那么F[i]表示在i的子树内(不包括i)所需要的额外步数 F[1]==0表示mid可行 k可能为0 #include<cstdio> #include< ...

  5. [Luogu3554] Poi2013 Triumphal arch

    Description Foreseeable和拿破仑的御用建筑师让·夏格伦在玩游戏 让·夏格伦会玩一个叫“凯旋门”的游戏:现在有一棵n个节点的树,表示一个国家 1号点代表这个国家的首都 这个游戏由两 ...

  6. bzoj 3420: Poi2013 Triumphal arch 树形dp+二分

    给一颗树,$1$ 号节点已经被染黑,其余是白的,两个人轮流操作,一开始 $B$ 在 $1$ 号节点,$A$ 选择 $k$ 个点染黑,然后 $B$ 走一步,如果 $B$ 能走到 $A$ 没染的节点则 $ ...

  7. 解题:POI 2013 Triumphal arch

    题面 二分答案,问题就转化为了一个可行性问题,因为我们不知道国王会往哪里走,所以我们要在所有他可能走到的点建造,考虑用树形DP解决(这个DP还是比较好写的,你看我这个不会DP的人都能写出来=.=) 定 ...

  8. [POI2013]LUK-Triumphal arch

    题目链接 此题的答案k具有可二分性 那么我们可以二分答案k,然后跑一个树形DP 令\(dp[i]\)表示到节点\(i\)时需要再多染色的点数 那么有\(dp[i]=\max(\sum_{fa[j]=i ...

  9. P3554 [POI2013]LUK-Triumphal arch

    \(\color{#0066ff}{ 题目描述 }\) 给一颗树,1号节点已经被染黑,其余是白的,两个人轮流操作,一开始B在1号节点,A选择k个点染黑,然后B走一步,如果B能走到A没染的节点则B胜,否 ...

随机推荐

  1. 【Codeforces 815C】Karen and Supermarket

    Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...

  2. 学习CSS布局 - position例子

    position例子 通过具体的例子可以帮助我们更好地理解“position”.下面是一个真正的页面布局. 结果: 代码如下: <!DOCTYPE html> <html lang= ...

  3. x509: certificate signed by unknown authority harbor 架构图

    默认时,client 与 Registry 的交互是通过 https 通信的.在 install Registry 时,若未配置任何tls 相关的 key 和 crt 文件,https 访问必然失败. ...

  4. linux下service+命令和直接去执行命令的区别,怎么自己建立一个service启动

    启动一些程序服务的时候,有时候直接去程序的bin目录下去执行命令,有时候利用service启动. 比如启动mysql服务时,大部分喜欢执行service mysqld start.当然也可以去mysq ...

  5. JDK的一个关于stack的小bug

    在一个项目中,使用了一个java.util.Stack,总所周知,栈是先入后出的,那么遍历其中元素的时候,也应该按照这个顺序遍历才对,但是实际情况确不是,以下是测试代码. Stack stack = ...

  6. Sql_索引分析

    「索引就像书的目录, 通过书的目录就准确的定位到了书籍具体的内容」,这句话描述的非常正确, 但就像脱了裤子放屁,说了跟没说一样,通过目录查找书的内容自然是要比一页一页的翻书找来的快,同样使用的索引的人 ...

  7. Bash 中常见的字符串操作

    获取字符串长度 ${#string} MyString=abcABC123ABCabc 注意这会自动去掉字符串结尾处的空格,如果在字符串中包含空格(开头.中间或结尾),就需要使用引号把字符串包裹起来: ...

  8. jackjson-databind-2.9.3 笔记

    问题 客户端请求: {"skip":0,"take":10,"corpName":"","cityCode&q ...

  9. Linux下部署Samba服务环境的操作记录

    关于Linux和Windows系统之间的文件传输,很多人选择使用FTP,相对较安全,但是有时还是会出现一些问题,比如上传文件时,文件名莫名出现乱码,文件大小改变等问题.相比较来说,使用Samba作为文 ...

  10. php 中self,this的区别和实地操作

    面向对象编程(OOP,Object OrientedProgramming)现已经成为编程人员的一项基本技能.利用OOP的思想进行PHP的高级编程,对于提高PHP编程能力和规划web开发构架都是很有意 ...