BZOJ2716 [Violet]天使玩偶(cdq分治+树状数组)
非常裸的KD-tree。然而我没学啊。
考虑如何离线求一个点在平面中的曼哈顿最近点。
绝对值显得有点麻烦,于是把绝对值拆开分情况讨论一波。对于横坐标小于该点的,记录对于纵坐标的前缀x+y最大值和后缀x-y最大值;横坐标大于该点的,记录对于纵坐标的前缀y-x最大值和后缀-y-x最大值。
不过这样不太方便,不如直接给点翻转一下换个坐标。这样就可以只用考虑左下的情况了。
那么这个题,cdq分治就好了。注意树状数组不能有0下标,以及初值设为-inf。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 300010
#define M 1000010
#define inf 10000000
int n,m,p,tree[M],stk[N<<],top=;
struct data
{
int op,x,y,i,ans;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&i<a.i;
}
}q[N],t[N];
struct data2
{
int x,y;
bool operator <(const data2&a) const
{
return x<a.x;
}
}a[N];
bool cmp(const data&a,const data&b)
{
return a.i<b.i;
}
void update(int k,int x){while (k<=p){stk[++top]=k;tree[k]=max(tree[k],x);k+=k&-k;}}
int getans(int k){int s=-inf;while (k){s=max(s,tree[k]);k-=k&-k;}return s;}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int i=l,j=mid+;
for (int k=l;k<=r;k++)
if (q[i]<q[j]&&i<=mid||j>r) t[k]=q[i++];
else t[k]=q[j++];
for (int k=l;k<=r;k++) q[k]=t[k];
for (int k=l;k<=r;k++)
if (q[k].op==&&q[k].i<=mid) update(q[k].y,q[k].x+q[k].y);
else if (q[k].op==&&q[k].i>mid) q[k].ans=min(q[k].ans,q[k].x+q[k].y-getans(q[k].y));
while (top) tree[stk[top--]]=-inf;
}
void work()
{
memset(tree,,sizeof(tree));
sort(a,a+m+);sort(q,q+n+);
int j=;
for (int i=;i<=n;i++)
if (q[i].op==)
{
while (j<m&&a[j+].x<=q[i].x) j++,update(a[j].y,a[j].x+a[j].y);
q[i].ans=min(q[i].ans,q[i].x+q[i].y-getans(q[i].y));
}
memset(tree,,sizeof(tree));
sort(q,q+n+,cmp);
top=;
solve(,n);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2716.in","r",stdin);
freopen("bzoj2716.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
m=read(),n=read();
for (int i=;i<=m;i++) p=max(p,max(a[i].x=read()+,a[i].y=read()+)+);
for (int i=;i<=n;i++) q[i].op=read(),p=max(p,max(q[i].x=read()+,q[i].y=read()+)+),q[i].i=i,q[i].ans=inf;
work();
for (int i=;i<=m;i++) a[i].x=p-a[i].x;
for (int i=;i<=n;i++) q[i].x=p-q[i].x;
work();
for (int i=;i<=m;i++) a[i].y=p-a[i].y;
for (int i=;i<=n;i++) q[i].y=p-q[i].y;
work();
for (int i=;i<=m;i++) a[i].x=p-a[i].x;
for (int i=;i<=n;i++) q[i].x=p-q[i].x;
work();
sort(q+,q+n+,cmp);
for (int i=;i<=n;i++)
if (q[i].op==) printf("%d\n",q[i].ans);
return ;
}
BZOJ2716 [Violet]天使玩偶(cdq分治+树状数组)的更多相关文章
- BZOJ 2716: [Violet 3]天使玩偶( CDQ分治 + 树状数组 )
先cdq分治, 然后要处理点对答案的贡献, 可以以询问点为中心分成4个区域, 然后去掉绝对值(4种情况讨论), 用BIT维护就行了. --------------------------------- ...
- 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组
[BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...
- BZOJ 1176 Mokia CDQ分治+树状数组
1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1854 Solved: 821[Submit][St ...
- 【bzoj3262】陌上花开 CDQ分治+树状数组
题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...
- 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组
题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...
- BZOJ 2683 简单题 cdq分治+树状数组
题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...
- LOJ3146 APIO2019路灯(cdq分治+树状数组)
每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...
- BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组
考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...
- BZOJ1176---[Balkan2007]Mokia (CDQ分治 + 树状数组)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176 CDQ第一题,warush了好久.. CDQ分治推荐论文: 1 <从<C ...
随机推荐
- Android 让图片等比例缩放的三种方法
方法一:客户端等比例 前提条件:服务器端需要返回原始图片的“宽和高”或者“宽高缩放比例”,客户端要显示的图片的宽或者高只要其一是固定的(例如:高度为200,宽度未知,或者高度为400宽度未知) 在这种 ...
- Android 百度sdk5.0定位
在开发中可能 会用到诸如“定位出当前所在城市,所在位置的经纬度”等功能.一次性的定位肯能定位不成功,可能经纬度未读出来,也可能是地址信息或者城市信息未读出来.此时就需对定位后拿到的信息做判断,加入没有 ...
- C# 深浅复制 MemberwiseClone(转载)
最近拜读了大话设计模式:原型模式,该模式主要应用C# 深浅复制来实现的!关于深浅复制大家可参考MSDN:https://docs.microsoft.com/zh-cn/dotnet/api/syst ...
- you-get帮助使用手册
you-get使用手册 可选参数: -V, --version 查看版本并退出 -h, --help 查看帮助信息 不影响使用的选项: -i, - ...
- 开源的mqtt服务器
看介绍挺强大,开源,可运行在Linux和Windows,文档中有相关测试工具,及客户端介绍. 希望有机会应用.http://www.emqtt.com/
- MongoDB集群运维笔记
前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结: MongDB副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分 ...
- Node 系列之url模块
引入 url: const url = require("url"); 用于URL解析.处理等操作的解决方案 1.url.parse(urlStr[, parseQueryStri ...
- 树莓派3代b型静态IP设置,和ssh的wlan配置
https://blog.csdn.net/qq_36305492/article/details/78607557
- Beta版本发布报告
项目名称 学霸系统写手机客户端 项目版本 Beta版本 负责人 北京航空航天大学计算机学院 hots团队 联系方式 http://www.cnblogs.com/hotsbuaa/ 要求发布日期 20 ...
- BugPhobia开发篇章:Beta阶段第IX次Scrum Meeting
0x01 :Scrum Meeting基本摘要 Beta阶段第九次Scrum Meeting 敏捷开发起始时间 2015/12/25 00:00 A.M. 敏捷开发终止时间 2015/12/28 23 ...