【解释】

It is appropriate when every input should be matched to an output.

【解释】

in a language model we try to predict the next step based on the knowledge of all prior steps.

【解释】

Γu is a vector of dimension equal to the number of hidden units in the LSTM.

【解释】

For the signal to backpropagate without vanishing, we need c<t> to be highly dependant on c<t−1>.

课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 0.Practice questions:Recurrent Neural Networks的更多相关文章

  1. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  2. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 3.Programming assignments:Jazz improvisation with LSTM

    Improvise a Jazz Solo with an LSTM Network Welcome to your final programming assignment of this week ...

  3. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

  4. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 2.Programming assignments:Trigger word detection

    Expected OutputTrigger Word Detection Welcome to the final programming assignment of this specializa ...

  5. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step

    Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...

  6. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 2.Programming assignments:Dinosaur Island - Character-Level Language Modeling

    Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...

  7. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 0.Practice questions:Sequence models & Attention mechanism

  8. 课程五(Sequence Models),第二 周(Natural Language Processing & Word Embeddings) —— 2.Programming assignments:Emojify

    Emojify! Welcome to the second assignment of Week 2. You are going to use word vector representation ...

  9. 课程五(Sequence Models),第二 周(Natural Language Processing & Word Embeddings) —— 1.Programming assignments:Operations on word vectors - Debiasing

    Operations on word vectors Welcome to your first assignment of this week! Because word embeddings ar ...

随机推荐

  1. nginx实现http www服务的方式

  2. [leetcode]41. First Missing Positive第一个未出现的正数

    Given an unsorted integer array, find the smallest missing positive integer. Example 1: Input: [1,2, ...

  3. cookie、sesstion、strorage

    1. cookie 第一:每个特定的域名下最多生成20个cookie  (数量上) <IE6: 20    |   >ie7:50   |  firefox: 50     |   IE ...

  4. node.js中stream流中可读流和可写流的使用

    node.js中的流 stream 是处理流式数据的抽象接口.node.js 提供了很多流对象,像http中的request和response,和 process.stdout 都是流的实例. 流可以 ...

  5. stark组件开发之排序

    class StartHandler(object): .......... ordered_list = [] # 排序规则由 用户指定. def get_ordered_list(self): r ...

  6. mysql 数据库设计

    数据库设计 需求分析 *1.用户模块 用于记录记录注册用户信息 包括属性:用户名,密码,电话,邮箱,身份证号,地址,姓名,昵称... 可选唯一标志属性:用户名,电话,身份证号 存储特点:随系统上线时间 ...

  7. Eigen矩阵基本运算

    1 矩阵基本运算简介 Eigen重载了+,-,*运算符.同时提供了一些方法如dot(),cross()等.对于矩阵类的运算符重载只支持线性运算,比如matrix1*matrix2是矩阵相乘,当然必须要 ...

  8. [uboot] (第三章)uboot流程——uboot-spl代码流程

    http://blog.csdn.net/ooonebook/article/details/52957395 以下例子都以project X项目tiny210(s5pv210平台,armv7架构)为 ...

  9. _ZNote_Qt_QtCreator_Tips_粘贴_历史剪切板

    发现 快捷键 Shift+Command + V 能够出现历史剪切板. 厉害了我的歌

  10. OpenCV与QT联合开发示例

    1.OpenCV及QT开发环境搭建 windows基于vs2017的opencv安装 windows下安装QT并与visual studio 2017搭建开发环境 2.工程创建 1.导入Qt项目 选择 ...