目录

本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。

前一篇:14LaTeX学习系列之---LaTeX的浮动体

后一篇:16LaTeX学习系列之---LaTeX数学公式的补充

总目录:19LaTeX学习系列之---LaTeX的总结

前言

写技术类的文档,免不了需要插入数学公式,今天我们学习的是在LaTeX里插入数学公式

(一)常用的数学公式命令

1.上下标

上标 a^{2x+3} \(a^{2x+3}\)
下标 a_{2x+3} \(a_{2x+3}\)

2.矢量

单符号矢量 \vec a \(\vec a\)
多符号矢量 \overrightarrow{xy} \(\overrightarrow{xy}\)

3.括号

小括号 () \(()\)
中括号 [] \([]\)
尖括号 \langle{}\rangle \(\langle{}\rangle\)
花括号 \{ \} \(\{ \}\)
适应中括号 \left( ……\right) \(\left( \right)\)
适应花括号 \left{……\right} \(\left\{ \right\}\)
上括号 \overbrace $\overbrace {1,2,3……} $
下括号 \underbrace $ \underbrace{1, 2, 3……} $

注:适应是指根据括号里面的内容,来确定括号的大小。

4.符号关系

加减 \pm \(\pm\)
\times \(\times\)
\div \(\div\)
不等于 \neq \(\neq\)
约等于 \approx \(\approx\)
恒等于 \equiv \(\equiv\)
大于等于 \geq \(\geq\)
小于等于 \leq \(\leq\)
相似 \sim \(\sim\)
正比于 \propto $\propto $
垂直 \perp $\perp $
弧度 \overset{\frown} {AB} $\overset{\frown} {AB} $
上划线 \overline{} \(\overline{1 2 3}\)

5.三角形符号

三角形符号 \Delta $\Delta $
夹角 \angle \(\angle{ABC}\)
角度 ^\circ $\sin60^\circ $
分度 '$ $ 59'$$

6.求和与累积

求累加 \sum \(\sum_{i=0}^{n}a\)
求极限 \lim_{x \to 0} \(\lim_{x \to 0}\)
求累积 \prod_{i=1}^n x_i \(\prod_{i=1}^n x_i\)
求导数 x\prime \(x\prime\)

7.积分与微分

求积分 \int_{0}^\infty{fxdx} \(\int_{0}^\infty{fxdx}\)
闭合曲线 \oint_{C} x^3, dx + 4y^2, dy $\oint_{C} x^3, dx + 4y^2, dy $
求二重积分 \iint_{D}^{W} , dx,dy \(\iint_{D}^{W} \, dx\,dy\)
求三重积分 \iiint_{E}^{V} , dx,dy,dz \(\iiint_{E}^{V} \, dx\,dy\,dz\)
微分符号 \nabla \(\nabla\)
求微分 \mathrm{d}x \(\mathrm{d}x\)
求偏微分 \partial x \(\partial x\)
求一阶微分 \dot x \(\dot x\)
求二阶微分 \ddot xy \(\ddot y\)

8.根号与分式

根号 \sqrt[x]{y} \(\sqrt[3]{2x+3}\)
分式 \frac {分子}{分母} \(\frac{2x+3}{3y-5}\)

注:在根号里,\sqrt[]{} 中的[]号是可选的,默认是开二次方。

9.集合

全部符号 \forall \(\forall\)
存在符号 \exists \(\exists\)
属于 \in $\in $
反属于 \ni \(\ni\)
不属于 \not\in $\not\in $
不反属于 \not\ni \(\not\ni\)
包含 \supset \(\supset\)
包含于 \subset $\subset $
包含有等于 \supseteq $\supseteq $
包含于有等于 \subseteq \(\subseteq\)
交集 \cap \(\cap\)
大号交集 \bigcap \(\bigcap\)
并集 \cup \(\cup\)
大号并集 \bigcup \(\bigcup\)
空集 \emptyset \(\emptyset\)
大号空集 \varbnothing \(\varnothing\)

10.逻辑与箭头符号

取反符号 \lnot q \(\lnot q\)
向左短箭头 \leftarrow $\leftarrow $
向右短箭头 \rightarrow $\rightarrow $
双向短箭头 \leftrightarrow $\leftrightarrow $
向左长箭头 \longleftarrow $\longleftarrow $
向右长箭头 \longrightarrow $\longrightarrow $
双向长箭头 \longleftrightarrow $\longleftrightarrow $
向左双短箭头 \Leftarrow $\Leftarrow $
向右双短箭头 \Rightarrow $\Rightarrow $
双向双短箭头 \Leftrightarrow $\Leftrightarrow $
向左双长箭头 \Longleftarrow $\Longleftarrow $
向右双长箭头 \Longrightarrow $\Longrightarrow $
双向双长箭头 \Longleftrightarrow $\Longleftrightarrow $

11.空格

小括号 a \ b \(a\ b\)
4个字符括号 a\quad b \(a\quad b\)

12.矩阵

(1)基本用法:

\begin{matrix}
0&1& 2 \\
4& 5& 6\\
7& 8 &9
\end{matrix}

$\begin{matrix}0&1& 2 \ 4& 5& 6\ 7& 8 &9 \end{matrix} $

只需要修改matrix环境就可以变为有边框矩阵

(2)普通用法

小括号框矩阵 pmatrix \(\begin{pmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{pmatrix}\)
中括号框矩阵 bmatrix \(\begin{bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{bmatrix}\)
大括号框矩阵 Bmatrix \(\begin{Bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Bmatrix}\)
单竖线框矩阵 vmatrix \(\begin{vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{vmatrix}\)
双竖线框矩阵 Vmatrix \(\begin{Vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Vmatrix}\)

(3)省略号矩阵

  1. 横向省略 \cdots
  2. 竖向省略 \vdots
  3. 斜向省略 \ddots
$$\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}$$

\[\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}\]

(4)行内小矩阵

\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)

\[这是一个行内\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)小矩阵
\]

(5)array环境

\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}

\[\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}
\]

13.方程组

方程组以cases环境开头

$$\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}
$$

\[\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}​\]

14.希腊字母

  1. 总计个数:24个希腊字母表

  2. 历史原因:西方的数学家们在推导数学定理时,仍然沿用并不好写也不好记的希腊字母。所以一直沿用至今

  3. 大小写区分:大写字母的是其小写latex首字母大写后的形式

小写 大写 latex
\(\alpha\) \(\Alpha\) \alpha
\(\beta\) \(\Beta\) \beta
\(\gamma\) \(\Gamma\) \gamma
\(\delta\) \(\Delta\) \delta
\(\epsilon\) \(\Epsilon\) \epsilon
\(\zeta\) \(\Zeta\) \zeta
\(\nu\) \(\Nu\) \nu
\(\xi\) \(\Xi\) \xi
\(\omicron\) \(\Omicron\) \omicron
\(\pi\) \(\Pi\) \pi
\(\rho\) \(\Rho\) \rho
\(\sigma\) \(\Sigma\) \sigma
\(\eta\) \(\Eta\) \eta
\(\theta\) \(\Theta\) \theta
\(\iota\) \(\Iota\) \iota
\(\kappa\) \(\Kappa\) \kappa
\(\lambda\) \(\Lambda\) \lambda
\(\mu\) \(\Mu\) \mu
\(\tau\) \(\Tau\) \tau
\(\upsilon\) \(\Upsilon\) \upsilon
\(\phi\) \(\Phi\) \phi,(\(\varphi\):\varphi
\(\chi\) \(\Chi\) \chi
\(\psi\) \(\Psi\) \psi
\(\omega\) \(\Omega\) \omega

(二)基础知识

1.常用公式

数学公式分为行内公式与行间公式

  1. 行间公式:$$
  2. 带编号的行间公式:equation环境
  3. 不带编号的行间公式:\[ \]

2.行内公式:

  1. 一对美元符号 $$
  2. 小括号:\(.... \)
  3. mah环境:begin{math} ... end{math}

3.数学函数:

\(\sin{x}\) \sin{}
\(\cos{x}\) \cos{}
\(\tan{x}\) \tan{}
\(\arcsin{x}\) \arcsin{}
\(\arccos{x}\) \arccos{}
\(\arctan{x}\) \arctan{}
\(\ln{}\) \ln{}

3.行间公式

  1. 一对双美元符号 $$$$

  2. 中括号:\[ ... \]

  3. displaymath环境:begin{displaymath}... end{displaymath}

  4. 有编号的行间公式:begin{equation}... end{equation}

  5. 无编号的行间公式:begin{equation}... end{equation}

    注意:无编号公式,需要导入amsmath宏包

(三)实例:

1.源代码

% 导言区
\documentclass{article} \usepackage{ctex}
% equation* 与 矩阵所需的宏包
\usepackage{amsmath} % 正文区
\begin{document}
\tableofcontents
% 常用符号
% 行间公式:$$
% 带编号的行间公式:equation环境
% 不带编号的行间公式:\[ \] \section{简介}
\LaTeX 分为两种模式,文本模式与数学公式 \section{行内公式}
\subsection{美元符号}
交换律是 $a+b=b+a$ 如 $1+2=2+1$
\subsection{小括号}
交换律是 \(a+b=b+a\) 如 \(1+2=2+1\)
\subsection{math环境}
交换律是
\begin{math}
a+b=b+a
\end{math}

\begin{math}
1+2=2+1.
\end{math} \section{上下标}
\subsection{上标}
$3x^2-x+2$ $3x^{x+1}-x+2$
\subsection{下标}
$x_1+x_2=4$ $x_{x+1}+x_2=4$ \section{希腊字母}
$\alpha \beta \gamma \delta \epsilon $ \section{数学函数}
$\log$
$\sin$
$\cos$
$\arcsin$
$\arccos$
$\arctan$
$\ln$ $\sin^2x + \cos^2x = 1$ $\sqrt[2]{2x+3}$ $\sqrt[3]{2x-5}$ \section{分式}
\subsection{/}
$3/4 $ \subsection{\textbackslash frac\{\}\{\}}
$\frac{8}{5}$ \section{行间公式}
\subsection{双美元符号}
交换律是$$a+b=b+a $$
如$$1+2=2+1$$
\subsection{中括号}
交换律是
\[a+b=b+a\]
如\[1+2=2+1\] \subsection{displaymath环境}
交换律是
\begin{displaymath}
a+b=b+a\label{eq:no2}
\end{displaymath}

\begin{displaymath}
1+2=2+1
\end{displaymath} \subsection{自动编号}
交换律见式\ref{eq:no1}
\begin{equation}
a+b=b+a \label{eq:no1}
\end{equation}
如见公式\ref{eq:no2}
\begin{equation}
1+2=2+1
\end{equation} \subsection{不自动编号}
交换律见式
\begin{equation*}
a+b=b+a \label{eq:no3}
\end{equation*}
如见公式 \ref{eq:no3}
\begin{equation*}
1+2=2+1
\end{equation*} \section{矩阵的排版}
\subsection{矩阵的括号}
%无括号
\[
\begin{matrix}
0 & 1 \\
1 & 0
\end{matrix}
\] %小括号
\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\] %中括号
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\] %大括号
\[
\begin{Bmatrix}
0 & 1 \\
1 & 0
\end{Bmatrix}
\] % 单竖线
\[
\begin{vmatrix}
0 & 1 \\
1 & 0
\end{vmatrix}
\] %双竖线
\[
\begin{Vmatrix}
0 & 1 \\
1 & 0
\end{Vmatrix}
\] \subsection{矩阵的省略号}
%\dots 横向省略号
%\vdots 竖向省略号
%\ddots 斜向省略号
\[
A = \begin{bmatrix}
a_{11} & \dots & a_{1n}\\
\vdots& \ddots & \vdots \\
0 & \dots & a_{nn}
\end{bmatrix}_{n \times n}
\] \subsection{行内小矩阵}
复数可用矩阵
\begin{math}
\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)
\end{math}
来表示 \subsection{array环境}
\[
\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}
\] \end{document}

3.输出效果

本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。

前一篇:14LaTeX学习系列之---LaTeX的浮动体

后一篇:16LaTeX学习系列之---LaTeX数学公式的补充

总目录:19LaTeX学习系列之---LaTeX的总结

作者:Mark

日期:2019/03/06 周三

15LaTeX学习系列之---LaTeX里插入数学公式的更多相关文章

  1. 16LaTeX学习系列之---LaTeX数学公式的补充

    目录 目录 前言 (一)知识点说明 1.基础细节 2.gather环境 3.align环境 4.split环境 5.cases环境 (二)实例 1.源代码 2.输出效果 目录 本系列是有关LaTeX的 ...

  2. 19LaTeX学习系列之---LaTeX的总结

    目录 目录 前言 (一)本系列的章节目录 (二)快速温习LaTeX 1.介绍 2.源文件结构 3.文档的结构 4.字体的设置 5.图片的插入 6.表格的插入 7.数学公式的插入 8.交叉引用与浮动体 ...

  3. 14LaTeX学习系列之---LaTeX的浮动体

    目录 目录 前言 (一)浮动体的基础知识 1.环境及语法 2.允许位置的参数 3.其他命令 (二)实例: 1.源代码 2.输出效果 (三)浮动体的高级操作 1.标题的控制 2.并排与子图表 3.绕排 ...

  4. 13LaTeX学习系列之---LaTeX插入表格

    目录 目录 前言 (一)插入表格的基础语法 1.说明 2.源代码 3.输出效果 (二)查看文档 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第13篇. 前一篇:12LaTeX学习系列之 ...

  5. 12LaTeX学习系列之---LaTex的图片插入

    目录 目录 前言 (一)插图的基本语法 (二)插入的基本设置 1.说明: 2.源代码: 3.输出效果 (三)查看文档 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第12篇. 前一篇:1 ...

  6. 11LaTeX学习系列之---LaTeX的特殊字符

    目录 目录 前言 (一)源代码 (二)输出效果 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第11篇. 前一篇:10LaTeX学习系列之---Latex的文档结构 后一篇:12LaTe ...

  7. 17LaTeX学习系列之---LaTeX的版面设计

    目录 目录 前言 (一)基础知识 1.纸张大小的设置 2.边距的设置 3.页眉页脚的设置 4.横分割线的设置 5.行间距与段间距 (二)实例 1.源代码 2.输出效果: 目录 本系列是有关LaTeX的 ...

  8. 18LaTeX学习系列之---LaTeX的参考文献

    目录 目录 前言 (一)简单的参考文献 1.说明 2.源代码 3.输出效果 (二)以文件管理的方式 1.说明: 2.源代码: 3.输出效果 (三)直接从源网站获取 1.说明 2.操作 目录 本系列是有 ...

  9. 10LaTeX学习系列之---Latex的文档结构

    目录 目录 前言 (一)对于Ctex宏包中的文档结构 1.说明 2.源代码 3.输出效果 4.技巧 (二)对于ctexart的文档结构 1.说明 2.源代码 3.输出效果 (三)对于ctexbook的 ...

随机推荐

  1. Python之列表推导式

    我们经常需要这样处理一个列表:把一个列表里面的每个元素, 经过相同的处理 ,生成另一个列表. 比如:一个列表1,里面都是数字,我们需要生成一个新的列表B,依次存放列表A中每个元素的平方 怎么办? 当然 ...

  2. 从零开始学 Web 之 CSS3(二)颜色模式,文字阴影,盒模型,边框圆角,边框阴影

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  3. fiddler对Iphone6s进行抓包教程

    1.下载fiddler_4.6,点击下一步直接安装. 2.打开fiddler,选择tools-options,在https中勾选decrypt https traffic和ignore server ...

  4. #3 Python解释器和编辑器

    前言 上文介绍了Python在不同平台的安装方法,本文将带领你了解Python解释器和编辑器的概念,并且选择出最符合自己的解释器和编辑器! 一.Python解释器 其实上文介绍的安装Python,实质 ...

  5. ELK(elasticsearch+kibana+logstash)搜索引擎(一): 环境搭建

    1.ELK简介 这里简单介绍一下elk架构中的各个组件,关于elk的详细介绍的请自行百度 Elasticsearch是个开源分布式搜索引擎,是整个ELK架构的核心 Logstash可以对数据进行收集. ...

  6. angularjs学习第五天笔记(第二篇:表单验证升级篇)

    您好,我是一名后端开发工程师,由于工作需要,现在系统的从0开始学习前端js框架之angular,每天把学习的一些心得分享出来,如果有什么说的不对的地方,请多多指正,多多包涵我这个前端菜鸟,欢迎大家的点 ...

  7. Java学习笔记之——常用转义符号

    \ 单独用会报错 \\   打印右斜杠 \n   换行 \t   Tab键 \"   双引号 \'   单引号

  8. webpack4 系列教程(四): 单页面解决方案--代码分割和懒加载

    本节课讲解webpack4打包单页应用过程中的代码分割和代码懒加载.不同于多页面应用的提取公共代码,单页面的代码分割和懒加载不是通过webpack配置来实现的,而是通过webpack的写法和内置函数实 ...

  9. es6中的Promise学习

    关于Promise Promise实例一旦被创建就会被执行 Promise过程分为两个分支:pending=>resolved和pending=>rejected Promise状态改变后 ...

  10. C#中的out、ref、params详解

    out参数: 如果你在一个方法中,返回多个相同类型的值的时候,可以考虑返回一个数组.但是,如果返回多个不同类型的值的时候,返回数组就不行了,那么这个时候,我们可以考虑使用out参数.out参数就侧重于 ...