Luogu4199 万径人踪灭 FFT、Manacher
先不考虑”不是连续的一段“这一个约束条件。可以知道:第$i$位与第$j$位相同,可以对第$\frac{i+j}{2}$位置上产生$1$的贡献(如果$i+j$为奇数表明它会对一条缝产生$1$的贡献),而每一个位置上或缝上的满足条件的字符串的个数就是$2^\text{贡献}-1$。把$\frac{1}{2}$忽略掉,也就是说:第$i$位与第$j$位相同时会在第$i+j$位产生$1$的贡献。这个是经典的生成函数+$FFT$求解的问题。具体来说,将$a,b$两个字母分开计算,以计算$a$的贡献为例,如果第$i$位上为$a$,则两个多项式的$x^i$项的系数为$1$,否则为$0$,然后将两个多项式做卷积得到的结果的每一项的系数就是$a$字母对每一位做的贡献,$b$同理。
然后我们考虑减掉连续的一段。连续的一段就是一段回文串,使用$Manacher$求解即可。
#include<bits/stdc++.h> #define ld long double //This code is written by Itst using namespace std; inline int read(){ ; ; char c = getchar(); while(c != EOF && !isdigit(c)){ if(c == '-') f = ; c = getchar(); } while(c != EOF && isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return f ? -a : a; } , MOD = 1e9 + ; ] , news[MAXN]; struct comp{ ld x , y; comp(ld _x = , ld _y = ){ x = _x; y = _y; } comp operator +(comp a){ return comp(x + a.x , y + a.y); } comp operator -(comp a){ return comp(x - a.x , y - a.y); } comp operator *(comp a){ return comp(x * a.x - y * a.y , x * a.y + y * a.x); } }A[MAXN]; int need , dir[MAXN] , calc[MAXN] , manacher[MAXN]; ); inline int poww(long long a , int b){ ; while(b){ ) times = times * a % MOD; a = a * a % MOD; b >>= ; } return times; } inline void swap(comp& a , comp& b){ comp t = a; a = b; b = t; } inline void FFT(int type){ comp wn , w; ; i < need ; ++i) if(i < dir[i]) swap(A[i] , A[dir[i]]); ; i < need ; i <<= ){ wn = comp(cos(pi / i) , type * sin(pi / i)); ; j < need ; j += i << ){ w = comp( , ); ; k < i ; ++k , w = w * wn){ comp x = A[j + k] , y = A[i + j + k] * w; A[j + k] = x + y; A[i + j + k] = x - y; } } } } int main(){ #ifndef ONLINE_JUDGE freopen("4199.in" , "r" , stdin); //freopen("4199.out" , "w" , stdout); #endif scanf("%s" , s); ; need = ; ) need <<= ; ; i < need ; ++i) dir[i] = (dir[i >> ] >> ) | (i & ? need >> : ); ; i < l ; ++i) if(s[i] == 'a') A[i].x = ; FFT(); ; i < need ; ++i) A[i] = A[i] * A[i]; FFT(-); ; i < need ; ++i) calc[i] = A[i].x / need / + 0.6; memset(&A , , sizeof(A)); ; i < l ; ++i) if(s[i] == 'b') A[i].x = ; FFT(); ; i < need ; ++i) A[i] = A[i] * A[i]; FFT(-); ; i < need ; ++i){ calc[i] += A[i].x / need / + 0.6; sum = (sum + poww( , calc[i]) - ) % MOD; } ; i < l ; ++i) news[(i << ) + ] = s[i]; , maxI = ; ; i < l << ; ++i){ if(maxD > i) manacher[i] = min(manacher[maxI * - i] , maxD - i - ); && i + manacher[i] <= l << && news[i - manacher[i]] == news[i + manacher[i]]) ++manacher[i]; sum = (sum - (manacher[i] >> ) + MOD) % MOD; if(i + manacher[i] > maxD){ maxD = i + manacher[i]; maxI = i; } } cout << sum; ; }
Luogu4199 万径人踪灭 FFT、Manacher的更多相关文章
- BZOJ 3160: 万径人踪灭 [fft manacher]
3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...
- BZOJ3160:万径人踪灭(FFT,Manacher)
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{ ...
- P4199 万径人踪灭 FFT + manacher
\(\color{#0066ff}{ 题目描述 }\) \(\color{#0066ff}{输入格式}\) 一行,一个只包含a,b两种字符的字符串 \(\color{#0066ff}{输出格式}\) ...
- BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher
BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...
- BZOJ3160 万径人踪灭 【fft + manacher】
题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\( ...
- 万径人踪灭(FFT+manacher)
传送门 这题--我觉得像我这样的菜鸡选手难以想出来-- 题目要求求出一些子序列,使得其关于某个位置是对称的,而且不能是连续一段,求这样的子序列的个数.这个直接求很困难,但是我们可以先求出所有关于某个位 ...
- bzoj 3160: 万径人踪灭【FFT+manacher】
考虑正难则反,我们计算所有对称子序列个数,再减去连续的 这里减去连续的很简单,manacher即可 然后考虑总的,注意到关于一个中心对称的两点下标和相同(这样也能包含以空位为对称中心的方案),所以设f ...
- 洛谷P4199 万径人踪灭(manacher+FFT)
传送门 题目所求为所有的不连续回文子序列个数,可以转化为回文子序列数-回文子串数 回文子串manacher跑一跑就行了,考虑怎么求回文子序列数 我们考虑,如果$S_i$是回文子序列的对称中心,那么只要 ...
- BZOJ3160 万径人踪灭(FFT+manacher)
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...
随机推荐
- CSS&JS两种方式实现手风琴式折叠菜单
<div class="accordion"> <div id="one" class="section"> < ...
- 使用wxpy来实现自动发送消息统计微信好友信息的功能
发送消息太频繁会出现禁言消息 1:导入wxpy模块 pip install wxpy pip3 install wxpy #二者选一 调用模块 # 导入模块 from wxpy import * # ...
- mybatis学习系列一
1引入dtd约束(6) Mybatis git地址:https://github.com/mybatis/mybatis-3/wiki/Maven 指导手册:http://www.mybatis.or ...
- 通用triggerEvent方法
假设有一个id为testA的a元素,然后有以下代码(jquery已存在): $(document).ready(function(){ $('#testA').on('testEvent', func ...
- 使用Chrome开发者工具远程调试原生Android上的H5页面
Android4.4(KitKat)开始,使用Chrome开发者工具可以帮助我们在原生的Android应用中远程调试WebView网页内容.具体步骤如下: (1)设置Webview调试模式 可以在Ac ...
- [20180118]tstats的问题.txt
[20180118]tstats的问题.txt --//关于使用tstats收集处理统计信息,可以看链接http://blog.itpub.net/267265/viewspace-1987839/ ...
- Sql Server 增加字段、修改字段、修改类型、修改默认值
1.修改字段名: alter table 表名 rename column A to B 2.修改字段类型: alter table 表名 alter column 字段名 type not null ...
- JS获取当前星期几的简易写法
var str = "今天是星期" + "日一二三四五六".charAt(new Date().getDay()); mark在此,方便日后复制 原文https ...
- Visual Stuido插件大全
JS Enhancements 使用JS能像C#代码一样折叠成块 Code Compare Code Compare is a powerful file and folder comparison ...
- Dos烧录脚本
Dos命令之前更改的太简单,现在加入判断是否进入fasboot模式和判断Android镜像是否存在:代码已经尽量简化成这样,dos命令功能还是比较不好用的,用了一下午的时间... @echo off ...