传送门


第一次接触到Boruvka求最小生成树

它的原版本是:初始每一个点构成一个连通块,每一次找到每一个连通块到其他的连通块权值最短的边,然后合并这两个连通块。因为每一次连通块个数至少减半,所以复杂度是\(O((n+m)logn)\)的

虽然它的原版本用途不多,但是思想可以涵盖很多其他题目,比如这道题

可以想到一个做法:将所有权值插入一个\(Trie\)里,在每一个叶子节点维护到达这个节点的数的编号。像上面那样维护若干连通块,每一次计算权值最小的边时,将当前连通块中所有权值从Trie中删去,然后对于连通块中的每个权值在\(Trie\)上找到异或和最小的数字和编号,最后连边、恢复原来的\(Trie\)。

复杂度\(O(nlog^2n)\),但常数太大,哪怕在\(CF\)的神机下大数据也会直接沦陷QAQ

正着不行,就反着考虑。设能够产生贡献的二进制最高位为\(k\),即对于所有数来说,存在第\(k\)位为\(0\)的数,也存在第\(k\)位为\(1\)的数,且对于\(>k\)的数均不满足这一条件。那么最优的连边方法显然是:这一位为\(1\)的数之间连成一个生成树,这一位为\(0\)的数之间连成一个生成树,然后在这两个点集之间连一条边。可以发现这个问题变成了两个子问题,且对于这两个子问题的\(k\)一定会小于当前问题的\(k\),所以可以直接递归下去。

考虑如何计算当前层连的边的贡献。不妨让每一层递归结束时把当前层所有权值对应的\(Trie\)树建好传给上面一层,那么每一层可以获得这一位为\(1\)的所有数的\(Trie\)和这一位为\(0\)的所有数的\(Trie\)。将点数较少的点集中所有点的权值放在点数较多的点集对应的\(Trie\)上跑最小值,就可以得到当前层连边的权值大小。计算完贡献后将两个\(Trie\)用类似线段树合并的方式合并,可以有效避免\(MLE\)。

总复杂度仍然是\(O(nlog^2n)\)但跑得快了不少。

#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<vector>
#include<set>
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    while(!isdigit(c))
        c = getchar();
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return a;
}

const int MAXN = 2e5 + 3;

struct node{
    node *ch[2];
    node(){ch[0] = ch[1] = NULL;}
};

struct Trie{
    node *rt = new node;

    void ins(int x){
        node *cur = rt;
        for(int i = 29 ; i >= 0 ; --i){
            if(cur->ch[(bool)(x & (1 << i))] == NULL)
                cur->ch[(bool)(x & (1 << i))] = new node;
            cur = cur->ch[(bool)(x & (1 << i))];
        }
    }

    int query(int x){
        int ans = 0;
        node *cur = rt;
        for(int i = 29 ; i >= 0 ; --i){
            bool f = x & (1 << i);
            if(cur->ch[f] != NULL)
                cur = cur->ch[f];
            else{
                cur = cur->ch[!f];
                ans += 1 << i;
            }
        }
        return ans;
    }
};
int N;
long long sum;
vector < int > val;

node* merge(node *A , node *B){
    if(A == NULL) return B;
    if(B == NULL) return A;
    A->ch[0] = merge(A->ch[0] , B->ch[0]);
    A->ch[1] = merge(A->ch[1] , B->ch[1]);
    return A;
}

Trie merge(Trie A , Trie B){
    A.rt = merge(A.rt , B.rt);
    return A;
}

Trie solve(vector < int > val , int now){
    if(val.empty()) return Trie();
    if(now < 0){
        Trie t;
        t.ins(val[0]);
        return t;
    }
    vector < int > lft , rht;
    for(auto t : val)
        t & (1 << now) ? rht.push_back(t) : lft.push_back(t);
    Trie L = solve(lft , now - 1) , R = solve(rht , now - 1);
    if(lft.size() < rht.size()){
        swap(lft , rht);
        swap(L , R);
    }
    int minN = 2e9;
    for(auto t : rht) minN = min(minN , L.query(t));
    if(!rht.empty()) sum += minN;
    return merge(L , R);
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    //freopen("out","w",stdout);
#endif
    N = read();
    for(int i = 1 ; i <= N ; ++i)
        val.push_back(read());
    sort(val.begin() , val.end());
    solve(val , 29);
    cout << sum;
    return 0;
}

CF888G Xor-MST 生成树、分治、Trie树合并的更多相关文章

  1. Codeforces Round #333 (Div. 1) D. Acyclic Organic Compounds trie树合并

    D. Acyclic Organic Compounds   You are given a tree T with n vertices (numbered 1 through n) and a l ...

  2. 2017ACM/ICPC广西邀请赛 K- Query on A Tree trie树合并

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  3. [BJWC2018]Border 的四种求法(后缀自动机+链分治+线段树合并)

    题目描述 给一个小写字母字符串 S ,q 次询问每次给出 l,r ,求 s[l..r] 的 Border . Border: 对于给定的串 s ,最大的 i 使得 s[1..i] = s[|s|-i+ ...

  4. 51nod 1295 XOR key (可持久化Trie树)

    1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查 ...

  5. SPOJ11414 COT3 博弈论 + Trie树合并

    考虑对于每个子树从下往上依次考虑 对于叶子节点而言,如果可以染色,那么其\(sg\)值为\(1\),否则为\(0\) 考虑往上合并 如果选择了\(x\),那么后继状态就是其所有子树 如果选了其他子树中 ...

  6. LOJ#6463 AK YOI 树分治+线段树合并

    传送门 既然是树上路径统计问题,不难想到要使用树分治,这里以点分治为例 由点分治的性质,每层只需要考虑经过重心的路径 因为需要维护路径长度在一定范围内的最大权值和,所以要用一个数据结构维护一下到根节点 ...

  7. 51nod 1295 XOR key | 可持久化Trie树

    51nod 1295 XOR key 这也是很久以前就想做的一道板子题了--学了一点可持久化之后我终于会做这道题了! 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X ...

  8. CodeForces979D:Kuro and GCD and XOR and SUM(Trie树&指针&Xor)

    Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...

  9. UOJ#400. 【CTSC2018】暴力写挂 边分治 线段树合并

    原文链接 www.cnblogs.com/zhouzhendong/p/UOJ400.html 前言 老年选手没有码力. 题解 先对第一棵树进行边分治,然后,设点 x 到分治中心的距离为 $D[x]$ ...

随机推荐

  1. 02--css背景与边框--css揭秘

    背景与边框 一 半透明边框 rgba/hsla颜色 1.难题 假设我们想给一个容器设置一层白色背景和一道半透明白色边框,body 的背景会从它的半透明边框透上来.我们最开始的尝试可能是这样的: #bo ...

  2. php使用PHPexcel类读取excel文件(循环读取每个单元格的数据)

    error_reporting(E_ALL); date_default_timezone_set('Asia/ShangHai'); include_once('Classes/PHPExcel/I ...

  3. Linux 学习笔记之超详细基础linux命令 Part 1

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122   说明:主要是在REHL Server 6操作系统下进行的测试 --字符界面虚拟终端与图形界面之间的切 方法:[ ...

  4. loadrunner 场景设计-设置结果文件保存路径

    场景设计-设置结果文件保存路径 by:授客 QQ:1033553122 Results->Results settings Results Name 结果文件夹名称 Directory 指定结果 ...

  5. Kotlin入门(20)几种常见的对话框

    提醒对话框手机上的App极大地方便了人们的生活,很多业务只需用户拇指一点即可轻松办理,然而这也带来了一定的风险,因为有时候用户并非真的想这么做,只是不小心点了一下而已,如果App不做任何提示的话,继续 ...

  6. Vue CLI3 开启gzip压缩

    gizp压缩是一种http请求优化方式,通过减少文件体积来提高加载速度.html.js.css文件甚至json数据都可以用它压缩,可以减小60%以上的体积. webpack在打包时可以借助 compr ...

  7. Java并发编程(五)Lock

    一.synchronized的缺陷 synchronized是java中的一个关键字,也就是说是Java语言内置的特性.那么为什么会出现Lock呢? 在上面一篇文章中,我们了解到如果一个代码块被syn ...

  8. Java新建Web应用与配置Tomcat流程

    1. 新版本IDEA新建Web应用后没有web.xml文件,需要通过下图方式添加 2. IDEA中的web文件夹相当于eclipse里的WebRoot文件夹,在里面新建WEB-INF文件夹,再创建cl ...

  9. C#微信公众号开发——获取access_token

    access_token是公众号的全局唯一票据,公众号调用各接口时都需使用access_token.正常情况下access_token有效期为7200秒(两个小时),微信获取access_token接 ...

  10. HDU ACM 3790 最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...