BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, of them are red, while the others are black. The root of the tree is vertex 1 and it's a red vertex.
Let's define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.

Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.

  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.

  • Vertex is the ancestor of vertex v  if it lies on the shortest path between vertex and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices v1,1,vi,2,...,vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.

Note that

  • BaoBao is free to change any n vertex among all the vertices to a red vertex, NOT necessary among the ki  vertiecs whose maximum cost he tries to minimize.

  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

Input

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:

The first line contains three integers n,m and q (2≤m≤n≤105,1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.

The second line contains m  integers r1,r2,...,rm (1=r1<r2<...<rm≤n), indicating the red vertices.

The following (n-1)  lines each contains three integers ui,vi and wi (1≤ui,vi≤n,1≤wi≤109 ), indicating an edge with wi weight connecting vertex ui and vi  in the tree.

For the following q  lines, the i-th line will first contain an integer ki(1≤ki≤n). Then ki  integers vi,1,vi,2,...viki  follow (1≤vi,1<vi,2<...<viki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.

It's guaranteed that the sum of in all test cases will not exceed , and the sum of in all test cases will not exceed .

Output

For each test case output q  lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

Sample Input

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

Sample Output

4
5
3
8
0
0
0

Hint

The first sample test case is shown above. Let's denote C(v) as the cost of vertex v .

For the 1st game, the best choice is to make vertex 2 red, so that C(3)=4,C(7)=3 and C(8)=4. So the answer is 4.

For the 2nd game, the best choice is to make vertex 3 red, so that C(4)=3,C(5)=2,C(7)=4 and C(8)=5. So the answer is 5.

For the 3rd game, the best choice is to make vertex 6 red, so that C(7)=1,C(8)=2,C(10)=2 and C(11)=3. So the answer is 3.

For the 4th game, the best choice is to make vertex 12 red, so that C(4)=8,C(5)=7 and C(12)=0. So the answer is 8.

Due to the design restrictions of ZOJ, we can only provide a subset of the testing data here (the original data is too large for ZOJ to store). We will update the testing data once we update ZOJ. Sorry for the inconvenience caused.

题意

给出一棵树,其中某些点是红色,其余点是黑色。定义一个点的花费为这个点到距其最近的红色祖先节点的距离。q次查询,每次查询给出k个节点,允许将最多一个黑色点变为红色, 求这k个点中最大花费的最小值。每次查询相互独立,不影响树的初始结构。

题解

dfs处理出每个点距离1点的距离D,每个点距离红色祖先的距离dis

倍增lca预处理,用于查询公共祖先

每个查询q

先将k个点按dis从大到小排序

每次处理第i个节点

1.找到和前一个点的公共祖先

2.如果深度<上一个深度,说明然红的点在上面,需要把前面的最大值+这一段距离

3.然后当前节点本身的dis和把公共祖先染红的新距离取最小

4.2,3操作得到的值取max

5.4操作得到的max和下一个点的dis取max再整体取min,因为有可能节点操作后值变小了,使得最大值为下一个节点

代码

 #include<bits/stdc++.h>
using namespace std; #define fi first
#define se second
#define LL long long const int maxn=1e5+;
const int INF=0x3f3f3f3f; int R[maxn],cnt[maxn],fa[maxn][],deep[maxn],n,m;
LL D[maxn],dis[maxn];
bool red[maxn];
vector< pair<int,int> >G[maxn]; void dfs(int x,int f)
{
if(red[x])R[x]=x;
else R[x]=R[f];
dis[x]=D[x]-D[R[x]];
for(auto v:G[x])
{
if(v.fi==f)continue;
D[v.fi]=D[x]+v.se;
deep[v.fi]=deep[x]+;
fa[v.fi][]=x;
dfs(v.fi,x);
}
}
bool cmp(LL a,LL b)
{
return dis[a]>dis[b];
}
void RMQ()
{
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
int LCA(int u,int v)
{
if(deep[u]<deep[v])swap(u,v);
int de=log(deep[u])/log(2.0);
for(int i=de;i>=;i--)
if(deep[u]-(<<i)>=deep[v])
u=fa[u][i];
if(v==u)return u;
for(int i=de;i>=;i--)
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
return fa[v][];
}
int main()
{
int t,q,a,b,c,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<=n;i++)
red[i]=,G[i].clear();
for(int i=;i<=m;i++)
scanf("%d",&a),red[a]=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}
D[]=dis[]=dis[n+]=;
dfs(,);
RMQ();
while(q--)
{
scanf("%d",&k);
LL ans=,maxx=,lon;
for(int i=;i<k;i++)
scanf("%d",&cnt[i]);
cnt[k]=n+;
sort(cnt,cnt+k,cmp);
int far=cnt[];
ans=min(dis[cnt[]],dis[cnt[]]);
for(int i=;i<k;i++)
{
int mom=LCA(far,cnt[i]);//找上一个和当前的公共祖先,染红mom节点
if(deep[mom]<deep[far])maxx+=D[far]-D[mom];//如果新祖先深度<上一个祖先深度,最大的距离需要+两个祖先之间的距离
lon=min(dis[cnt[i]],D[cnt[i]]-D[mom]);//当前节点本身距离红色祖先的距离和把到mom染红后的节点距离取min
maxx=max(lon,maxx);
far=mom;
ans=min(ans,max(maxx,dis[cnt[i+]]));//保证每次处理最大值
}
printf("%lld\n",ans);
}
}
return ;
}

2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)的更多相关文章

  1. 2018 icpc 青岛网络赛 J.Press the Button

    Press the Button Time Limit: 1 Second      Memory Limit: 131072 KB BaoBao and DreamGrid are playing ...

  2. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  3. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

  4. 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat

    题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...

  5. 2018 ICPC南京网络赛 L Magical Girl Haze 题解

    大致题意: 给定一个n个点m条边的图,在可以把路径上至多k条边的权值变为0的情况下,求S到T的最短路. 数据规模: N≤100000,M≤200000,K≤10 建一个立体的图,有k层,每一层是一份原 ...

  6. 2018 icpc 徐州网络赛 F Features Track

    这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...

  7. 2018 ACM-ICPC 青岛网络赛

    最近打比赛不知道为什么总是怀疑自己 写完之后不敢交,一定跟学长说一遍自己的思路 然后发现"哦原来我是对的" 然后就A掉了…… 所以还是要有自信 Problem A 最大值直接输出m ...

  8. 【2018 ICPC焦作网络赛 K】Transport Ship(多重背包二进制优化)

    There are N different kinds of transport ships on the port. The ith kind of ship can carry the weigh ...

  9. 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)

    There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...

随机推荐

  1. 《DSP using MATLAB》Problem 7.11

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. Git 2.x 中git push时遇到 push.default 警告的解决方法

    近在学习使用 git&GitHub,然后今天遇到了一个问题.在执行 git add 和 git commit 操作之后,再进行 git push 操作,出现了如下提示: $ git push ...

  3. docker安装solr集群5.3.1

    docker-compose.yml: version: '3' services: zookeeper-A: image: zookeeper:3.4.11 ports: - "12181 ...

  4. node升级的正确方法

    本文主要是针对安装了node的用户如何对node进行升级或者安装指定版本:没有安装node的可以参考连接node安装方法 . 安装方法: 1.产看node版本,没安装的请先安装: $  node -v ...

  5. [SQL]T-Sql 递归查询(给定节点查所有父节点、所有子节点的方法)

    T-Sql 递归查询(给定节点查所有父节点.所有子节点的方法)   -- 查找所有父节点with tab as( select Type_Id,ParentId,Type_Name from Sys_ ...

  6. MySQL查询当天、本周、本月数据语句

    今天 select * from 表名 where to_days(时间字段名) = to_days(now()); 昨天 SELECT * FROM 表名 WHERE TO_DAYS( NOW( ) ...

  7. Struts vs spring mvc

    1. 机制.spring mvc 的入口是servlet, 而struts是filter(这里要指出,filter和servlet是不同的.以前认为filter是servlet的一种特殊),这样就导致 ...

  8. 谈谈线上CPU100%排查套路

    知识点总结 ---------------------------------------------------------------------------------------------- ...

  9. Thrift 的五种工作模式

    一.thrift 共有5中工作模式,分成阻塞和非阻塞: 阻塞:TSimpleServer.TThreadPoolServer 非阻塞:TNonblockingServer.THsHaServer.TT ...

  10. OS与Internet

    1 操作系统 操作系统(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行 ...