[P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论
刚好今天(初赛上午)智推了一个数论题
我屁颠屁颠地去学了乘法逆元
(zcy吊打集训队!)(逃
然后才开始做这题。
乘法逆元
乘法逆元的思路大致就是a*x恒等于1(mod b)满足a,b互质,则x为a的逆元
这里给一个P2613的函数
void exgcd(int a, int b, int &d, int &x,int &y)
{
if (b == ) {
d = a;
x = ;
y = ;
return;
}
exgcd(b, a%b, d, x, y);
int t = y;
y = x - (a / b)*y;
x = t;
}
还有一个线性算法,就是适合P3811的
a[i] = (p-p/i)*a[p%i]%p;//zcyddjxd
大致就是这两种了
本蒟蒻在数学一本通上看的线性貌似是a[i] = -(p/i)*a[p%i]%p; 看起来用在这里不行
思路
上面介绍了一下乘法逆元的算法,其中第一种就是扩展欧几里得的出来的
我这里引用@huangdu233 大佬的题解的分析(我自己推导不来,只会插模板)
求解不定方程a*x+b*y==gcd(a,b);
先给个解法推导吧:
∵a=[a/b]*b+a%b;
又∵欧几里得知:gcd(a,b)==gcd(b,a%b);
∴([a/b]*b+a%b)*x+b*y=gcd(a,b);
∴[a/b]*b*x+(a%b)*x+b*y=gcd(a,b);
∴b*([a/b]*x+y)+(a%b)*x=gcd(b,a%b);
看到这里,我们不难发现:
令:a'=b,x'=[a/b]*x+y,b'=a%b,y'=x;
整理后原式又变成了:a'*x'+b'*y'==gcd(a',b');
当当当当!!!!!可以递归了
废话了那么多,我就直接给代码吧
#include<bits/stdc++.h>
#define ll long long
#define mod 19260817
#define MAXN 10010
using namespace std;
ll a,b,x,y;
void exgcd(ll a, ll b, ll &x, ll &y)
{
if (b == ) {
x = ;
y = ;
return;
}
exgcd(b, a%b, y, x);
y -= (a / b)*x;
}
int main()
{
cin >> a >> b;
exgcd(a, b, x, y);
cout << (x + b) % b;
}
(刚用上VisualStudio 感觉还行)
注意
刚发现hl大佬写了这题的题解!
https://www.luogu.org/blog/hl666/solution-p1082
Orz 太强了
[P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)的更多相关文章
- luogu1082 [NOIp2012]同余方程 (扩展欧几里得)
由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- 扩展欧几里得模板&逆元求法
拓展欧几里得: 当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d : d = gcd ( a , b ) = gcd ( b , a m ...
- luogu P1082 同余方程 |扩展欧几里得
题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...
- NOIP2012 同余方程-拓展欧几里得
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)
P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
随机推荐
- Ubuntu 进入、退出命令行的快捷键
进入: Ctrl+Alt+F1 退出: Ctrl+Alt+F7(或者 Alt+F7) 进入命令行窗口:Ctrl+Alt+T
- 装饰器实现session登陆 验证功能
装饰器 登陆验证功能 1.装饰器模板 from django.shortcuts import render, redirect, HttpResponse from django.conf impo ...
- KnockOut -- 快速入门
简单示例 <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf- ...
- SQL Server Profiler的简单使用
SQL Server Profiler可以检测在数据上执行的语句,特别是有的项目不直接使用sql语句,直接使用ORM框架的系统处理数据库的项目,在调试sql语句时,给了很大的帮助. 之前写了使用SQL ...
- jQuery数字滚动(模拟网站人气、访问量递增)原创
插件描述:实现数字上下滚动,模拟网站人气.访问量递增的动画效果,兼容性如下: 使用方法 $(el).runNum(val,params); 参数详解 val:数值型(默认70225800): pa ...
- [转] 梦里Babel知多少(一)
平时开发中,经常需要用到ES6/ES7的语法.那么就需要用到Babel来对代码进行转码处理. 之前用Vue比较多,所以以Vue-cli作为参考来分析. 第一张图是几个月前的Vue-cli生成的 第二 ...
- JSP基础知识➣Cookie和Session(五)
JSP Cookie 处理 Cookie是存储在客户机的文本文件,它们保存了大量轨迹信息.在servlet技术基础上,JSP显然能够提供对HTTP cookie的支持.JSP脚本通过request对象 ...
- java内嵌jetty服务器
有的时候需要将一个简单的功能封装为服务,相比python使用flask.web.py的简洁,使用java-web显得太重量级,幸好,我们可以直接在java项目中使用jetty来搭建简易服务 1.pom ...
- 【AtCoder】ARC072
ARC072 C - Sequence 直接认为一个数是正的,或者第一个数是负的,每次将不合法的负数前缀和改成+1正数前缀和改成-1 #include <bits/stdc++.h> #d ...
- 分布式一致性算法——paxos
一.什么是paxos算法 Paxos 算法是分布式一致性算法用来解决一个分布式系统如何就某个值(决议)达成一致的问题. 人们在理解paxos算法是会遇到一些困境,那么接下来,我们带着以下几个问题来学习 ...