P3705 [SDOI2017]新生舞会

题目描述

学校组织了一次新生舞会,\(Cathy\)作为经验丰富的老学姐,负责为同学们安排舞伴。

有\(n\)个男生和\(n\)个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴。

\(Cathy\)收集了这些同学之间的关系,比如两个人之前认识没计算得出\(a_{i,j}\)

\(Cathy\)还需要考虑两个人一起跳舞是否方便,比如身高体重差别会不会太大,计算得出\(b_{i,j}\) ,表示第\(i\)个男生和第\(j\)个女生一起跳舞时的不协调程度。

当然,还需要考虑很多其他问题。

\(Cathy\)想先用一个程序通过\(a_{i,j}\)和\(b_{i,j}\) ,求出一种方案,再手动对方案进行微调。

\(Cathy\)找到你,希望你帮她写那个程序。

一个方案中有\(n\)对舞伴,假设没对舞伴的喜悦程度分别是\(a'_1,a'_2,...,a'_n\)

假设每对舞伴的不协调程度分别是\(b'_1,b'_2,...,b'_n\)

令\(C=\frac{a'_1+a'_2+...+a'_n}{b'_1+b'_2+...+b'_n}\)

\(Cathy\)希望\(C\)值最大。

输入输出格式

输入格式:

第一行一个整数\(n\)。

接下来\(n\)行,每行\(n\)个整数,第\(i\)行第\(j\)个数表示\(a_{i,j}\)

接下来\(n\)行,每行\(n\)个整数,第i行第j个数表示\(b_{i,j}\)

输出格式:

一行一个数,表示\(C\)的最大值。四舍五入保留6位小数,选手输出的小数需要与标准输出相等。

说明

对于10%的数据, \(1≤n≤5\)

对于40%的数据, \(1≤n≤18\)

另有20%的数据, \(b_{i,j}≤1\)

对于100%的数据,\(a_{i,j},b_{i,j}<=10^4,1≤n≤100\)


做的第一道01分数规划的题。

01分数规划问题大多采用一种二分答案解法。

我们分数拆成整数,即

\(C*(b'_1+b'_2+...+b'_n)=a'_1+a'_2+...+a'_n\)

然后猜测一个\(C\)的值,检验在最优\(a,b\)配对的情况下左边与右边的大小关系,进而对\(C\)进行二分答案

如何求解最优配对呢?

再转化一下式子,左边-右边=

\(\sum_{i=1}^n (a'_i-b'_i*C)\)

我们要求解sum的最大值。

如果我们把对应点连上边\((a'_i-b'_i*C)\),就变成了跑 最大费用最大流或者 二分图带权匹配了

最后一点,这个题它卡常...


吸氧code:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=204;
const int inf=0x3f3f3f3f;
const double finf=1e100;
int a[N][N],b[N][N],n,used[N],pre[N];
double l=0.0,r=0.0,dis[N];
struct node
{
double c;
int from,to,next,w;
}edge[N*N];
int head[N],cnt=-1;
void add(int u,int v,double c,int w)
{
edge[++cnt].to=v;edge[cnt].from=u;edge[cnt].w=w;edge[cnt].c=c;edge[cnt].next=head[u];head[u]=cnt;
edge[++cnt].to=u;edge[cnt].from=v;edge[cnt].w=0;edge[cnt].c=-c;edge[cnt].next=head[v];head[v]=cnt;
}
queue <int > q;
bool spfa()
{
memset(used,0,sizeof(used));
memset(pre,0,sizeof(pre));
while(!q.empty()) q.pop();
for(int i=1;i<=2*n+1;i++) dis[i]=-finf;
dis[0]=0;
pre[0]=-1;
used[0]=1;
q.push(0);
while(!q.empty())
{
int u=q.front();
q.pop();
used[u]=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to,w=edge[i].w;double c=edge[i].c;
if(w&&dis[u]+c>dis[v])
{
dis[v]=dis[u]+c;
pre[v]=i;
if(!used[v])
{
used[v]=1;
q.push(v);
}
}
}
}
return dis[2*n+1]!=-finf;
}
bool check(double L)
{
memset(head,-1,sizeof(head));
cnt=-1;
for(int i=1;i<=n;i++)
{
add(0,i,0,1);
add(i+n,2*n+1,0,1);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
add(i,j+n,double(a[i][j])-double(b[i][j])*L,1);
double sum=0.0;
while(spfa())
{
int now=2*n+1;
while(pre[now]!=-1)
{
edge[pre[now]].w-=1;
edge[pre[now]^1].w+=1;
sum+=edge[pre[now]].c;
now=edge[pre[now]].from;
}
}
return sum<0.0;
} int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
r+=a[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&b[i][j]);
while(l+1e-7<r)
{
double mid=(l+r)/2.0;
if(check(mid))
r=mid;
else
l=mid;
}
printf("%lf\n",l);
return 0;
}

2018.6.4

洛谷 P3705 [SDOI2017]新生舞会 解题报告的更多相关文章

  1. 洛谷3705 [SDOI2017] 新生舞会 【01分数规划】【KM算法】

    题目分析: 裸题.怀疑$ O(n^4log{n}) $跑不过,考虑Edmonds-Karp优化. 代码: #include<bits/stdc++.h> using namespace s ...

  2. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  3. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  4. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  5. P3705 [SDOI2017]新生舞会 01分数规划+费用流

    $ \color{#0066ff}{ 题目描述 }$ 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴. 有\(n\)个男生和\(n\)个女生参加舞会买一个男生和一个女生一 ...

  6. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  7. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  8. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

  9. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

随机推荐

  1. Linux 开启端口命令

    编者按 今天在配置Zookeeper集群的时候,碰到下面的问题: 这里说明是主机192.168.116.129:3888没有连通. 首先ping了一把,是通的,说明主机之间是连通的,然后再检查开放的端 ...

  2. Android自动化测试之:获取 参数:comonentName 的值方法

    十年河东十年河西,莫欺少年穷! 不了解Activity的,可参考:http://www.cnblogs.com/tekkaman/archive/2011/06/07/2074211.html 相关代 ...

  3. 由一个“两次请求”引出的Web服务器跨域请求访问问题的解决方案

    http://blog.csdn.net/cnhnnyzhy/article/details/53128179 (4)Access-Control-Max-Age 该字段可选,用来指定本次预检请求的有 ...

  4. Bash 笔记

    获取当前工作目录 basepath=$(cd `dirname $0`; pwd) 源文 : https://sexywp.com/bash-how-to-get-the-basepath-of-cu ...

  5. linux-shell-变量参数

    sxt1 的生命周期随着调起而生效,结束就消失 子进程和父进程的关系,

  6. 毕业设计 之 三 mooodle及bigbluebutton使用笔记(未完成)

    毕业设计 之 三 mooodle及bigbluebutton使用笔记 作者:20135216 平台:windows10 备注:N把辛酸泪 附:在准备过程中其他的一些零碎小问题 一.关于moodle 1 ...

  7. 《Linux内核分析》期终总结

    作者:杨舒雯,原创作品转载请注明出处,<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 目录: 1.通过简 ...

  8. 使用代理创建连接池 proxyPool

    配置文件properties url=jdbc:mysql://127.0.0.1:3306/mine?characterEncoding=UTF-8 user=root password=1234 ...

  9. 第三个Sprint冲刺第4天

    成员:罗凯旋.罗林杰.吴伟锋.黎文衷 讨论内容:各成员汇报各自完成的情况.

  10. JMX configuration for Tomcat

    Window下执行步骤: D:\apache-tomcat-7.0.57\bin\catalina.bat set CATALINA_OPTS=-Dcom.sun.management.jmxremo ...