MT【68】一边柯西一边舍弃
求$\sqrt{x-5}+\sqrt{24-3x}$的最值.
通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法:
证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\le\sqrt{(1+3)(x-5+8-x)}=\sqrt{12}$
这边用了柯西不等式.
$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\ge\sqrt{x-5}+\sqrt{8-x}=\sqrt{(\sqrt{x-5}+\sqrt{8-x})^2}$
$=\sqrt{3+2\sqrt{x-5}\sqrt{8-x}}\ge\sqrt{3}$
当$x=8$时候等号成立.
MT【68】一边柯西一边舍弃的更多相关文章
- MT【146】一边柯西,一边舍弃
(2018浙江省赛9题)设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______ 解答:$x+12=6\sqrt{y}+4\sqrt{x-y} ...
- MT【62】柯西求三角值域
求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...
- MT【124】利用柯西求最值
已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...
- P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解价格
NXP恩智浦P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解 NXP LPC700系列单片机解密型号: P87LPC759.P87LPC760.P87LPC761. ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- Matlab的68个小常识
1.det(A)可以计算矩阵A的行列式值.inv(A)可以计算矩阵A的逆 2.rref(A)可以将矩阵A化为行简化阶梯梯形矩阵 3.eps是系统定义的容许误差,eps=2.2204*10-16 4.p ...
- /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题
一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C ...
- Scala 深入浅出实战经典 第68讲:Scala并发编程原生线程Actor、Cass Class下的消息传递和偏函数实战解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- MT写的对URL操作的两个方法
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
随机推荐
- HNOI2014做题笔记
HNOI2014 世界树(虚树.倍增) \(\sum M \leq 3 \times 10^5\)虚树没得跑 对于所有重要点和它们的\(LCA\)建立虚树,然后计算出每一个虚树上的点被哪个重要点控制. ...
- CF809D Hitchhiking in the Baltic States LIS、平衡树
传送门 看到最长上升子序列肯定是DP 设\(f_i\)表示计算到当前,长度为\(i\)的最长上升子序列的最后一项的最小值,显然\(f_i\)是一个单调递增的序列. 转移:对于当前计算的元素\(x\), ...
- JQuery加载html网页
在ASP.NET MVC环境中,使用jQuery脚本去实现加载html网页. 一般情况之下,在ASP.NET MVC项目中,你不能在~/Views目录之下添加或是创建任何html为后缀的网页.但这也不 ...
- MySQL调优基础, 与hikari数据库连接池配合
1.根据硬件配置系统参数 wait_timeout 非交互连接的最大存活时间, 10-30min max_connections 全局最大连接数 默认100 根据情况调整 back_log ...
- 【php增删改查实例】第十八节 - login.php编写
1.对用户名和密码进行非空判断(后台验证) $username; $password; if(isset($_POST['username']) && $_POST['username ...
- windows下pwd、ls、tail-f命令使用
一.问题 习惯了linux命令,在windows上使用cmd没有这些命令时很不习惯. 二.解决办法 2.1 找到这些命令对应的windows命令 ls,对应于windows的dir pwd,对应于wi ...
- Python-元组-10
元祖 Why:对于容器型数据类型list,无论谁都可以对其增删改查,那么有一些重要的数据放在list中是不安全的,所以需要一种容器类的数据类型存放重要的数据,创建之初只能查看而不能增删改,这种数据类型 ...
- HDU 2052 Picture
http://acm.hdu.edu.cn/showproblem.php?pid=2052 Problem Description Give you the width and height of ...
- 在Windows下查看Java的JRE路径
java -showversionecho %JAVA_HOME%path 这个方法可以确认当前java.exe的版本,但是并不能确定输出JRE的具体路径. JAVA_HOME的路径,也不一定就是当前 ...
- C/C++关键字 new/delete和malloc/free
基本上new/delete来自于C++,作为对对象的创建.因此在使用new创建对象时候new会调用对象的构造函数,同样delete会调用对象的析构函数释放对象.而malloc/free操作的是直接的内 ...