求$\sqrt{x-5}+\sqrt{24-3x}$的最值.



通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法:

证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\le\sqrt{(1+3)(x-5+8-x)}=\sqrt{12}$

         这边用了柯西不等式.

       $\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x-5}+\sqrt{3}\sqrt{8-x}\ge\sqrt{x-5}+\sqrt{8-x}=\sqrt{(\sqrt{x-5}+\sqrt{8-x})^2}$

                                       $=\sqrt{3+2\sqrt{x-5}\sqrt{8-x}}\ge\sqrt{3}$

        当$x=8$时候等号成立.

MT【68】一边柯西一边舍弃的更多相关文章

  1. MT【146】一边柯西,一边舍弃

    (2018浙江省赛9题)设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______ 解答:$x+12=6\sqrt{y}+4\sqrt{x-y} ...

  2. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  3. MT【124】利用柯西求最值

    已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...

  4. P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解价格

    NXP恩智浦P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解 NXP LPC700系列单片机解密型号: P87LPC759.P87LPC760.P87LPC761. ...

  5. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  6. Matlab的68个小常识

    1.det(A)可以计算矩阵A的行列式值.inv(A)可以计算矩阵A的逆 2.rref(A)可以将矩阵A化为行简化阶梯梯形矩阵 3.eps是系统定义的容许误差,eps=2.2204*10-16 4.p ...

  7. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  8. Scala 深入浅出实战经典 第68讲:Scala并发编程原生线程Actor、Cass Class下的消息传递和偏函数实战解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...

  9. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

随机推荐

  1. 解密:Python风靡全宇宙,首要原因竟是它?

    就让我们从近年来大数据的兴起说起,为你娓娓道来Python火爆的真正原因. 郁闷的大数据程序员 随着大数据的崛起,大多数行业发现自己进入了一种恐慌状态:他们花费了大量的时间和金钱来建立他们的大数据渠道 ...

  2. asp.net网站,在没有项目源码情况下的扩展

    如果在没有源码的情况下,要扩展asp.net网站,可以自己新增一个类库项目,在里面添加需要扩展的类,代码如下: using System; using System.Collections.Gener ...

  3. [HAOI2017]方案数[组合计数、容斥、dp]

    题意 题目链接 分析 先考虑没有障碍怎么做,定义 f(i,j,k) 每一维走了 i,j,k 位的方案数,转移乘个组合数即可. 现在多了一些障碍,考虑容斥.实际我们走过的点都有严格的大小关系,所以先把所 ...

  4. JVM规范系列第6章:Java虚拟机指令集

    一条 Java 虚拟机指令由一个特定操作的操作码和零至多个操作所使用到的操作数所构成. 虚拟机指令 = 操作码 + 操作数. 其中,操作码值分别为 254(0xfe)和 255(0xff),助记符分别 ...

  5. 老生常谈,函数柯里化(curring)

    柯里化这个概念确实晦涩难懂,没有深入思考过的人其实真的很难明白这是一个什么东西.看起来简单.简单到或许只需要一行代码: const curry = fn => (…args) => fn. ...

  6. [UWP 自定义控件]了解模板化控件(2.1):理解ContentControl

    UWP的UI主要由布局容器和内容控件(ContentControl)组成.布局容器是指Grid.StackPanel等继承自Panel,可以拥有多个子元素的类.与此相对,ContentControl则 ...

  7. 用JS制作一个信息管理平台(1)

    首先,介绍一些需要用到的基本知识. [JSON] JSON是数据交互中,最常用的一种数据格式. 由于各种语言的语法都不相同,在传递数据时,可以将自己语言中的数组.对象等转换为JSON字符串. 传递之后 ...

  8. KVM虚拟机管理——资源调整

    1. 概述2. 计算资源调整2.1 调整处理器配置2.2 调整内存配置3. 存储资源调整3.1 根分区扩展3.2 添加磁盘4. 网络资源调整 1. 概述 KVM在使用过程中,会涉及到计算(CPU,内存 ...

  9. CSS 列表实例

    CSS 列表属性允许你放置.改变列表项标志,或者将图像作为列表项标志.CSS 列表属性(list)属性 描述list-style 简写属性.用于把所有用于列表的属性设置于一个声明中.list-styl ...

  10. ruby安装及升级

    在centos6.x下执行上面的"gem install redis"操作可能会报错,坑很多!默认yum安装的ruby版本是1.8.7,版本太低,需要升级到ruby2.2以上,否则 ...