题目链接

BZOJ 3864

题意简述

设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\)的最长公共子序列为\(i\),对所有\(0 \le i \le n\)输出答案。

题解

传说中的计算机理论科科科科科学家cls的DP套DP。

因为看别人写的题解我都看不懂……所以我在这篇题解中,换一种方式讲解,从暴力一点点优化得到DP套DP,应该更容易理解。

暴力怎么写呢?显然是枚举所有可能的字符串\(B\),然后对每一个都用经典的DP,求出与\(A\)的LCS。写个伪代码:

dfs(cur)
if(cur > m)
for(i: 1 -> m)
for(j: 1 -> n)
f[i][j] = max(f[i - 1][j], f[i][j - 1])
if(b[i] == a[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1)
ans[f[m][n]]++
return;
for(c in {A, T, C, G})
b[cur] = c
dfs(cur + 1)

考虑略微更改一下暴力的顺序,从把字符串枚举完再DP求LCS,变成一边枚举一边DP,并把\(f[cur]\)传入到递归函数中。

dfs(cur, f[])
if(cur > m)
ans[f[n]]++
return;
for(c in {A, T, C, G})
for(i : 1 -> n)
newf[i] = max(f[i], newf[i - 1])
if(c == a[i]) newf[i] = max(newf[i], f[i - 1] + 1)
dfs(cur + 1, newf)

往函数里传一个数组显然非常菜,考虑状压这个\(f\)数组。显然,一行f数组的每一位\(f[i]\)要么比\(f[i - 1]\)多1,要么和\(f[i - 1]\)相同。那么用一个长为\(n\)的二进制数状压这个\(f\)数组的差分即可。伪代码(\(cnt1(s)\)表示二进制数\(s\)中1的个数,此时就等于\(f[n]\)):

dfs(cur, s)
if(cur > m)
ans[cnt1(s)]++
return;
for(c in {A, T, C, G})
for(i : 1 -> n)
f[i] = f[i - 1] + (s >> (i - 1) & 1)
for(i : 1 -> n)
newf[i] = max(f[i], newf[i - 1])
if(c == a[i]) newf[i] = max(newf[i], f[i - 1] + 1)
for(i: 1 -> n)
t |= (f[i] - f[i - 1]) << (i - 1)
dfs(cur + 1, t)

\(s\)显然有很多重复的,每层DFS都这样算一遍非常浪费,因为这段代码中\(s\)对应的\(t\)只和\(c\)有关,不如预处理出每个\(s\)在\(B[cur] == c\)时能转移到哪个状态\(t\)(预处理方法就和上面这段代码中的那部分一样)。设这个状态\(t\)为\(trans[s][c]\)。

dfs(cur, s)
if(cur > m)
ans[cnt1(s)]++
return;
for(c in {A, T, C, G})
dfs(cur + 1, trans[s][c])

这个DFS都变成这样了,忍不住考虑能不能把它变成DP。用\(dp[i][s]\)表示字符串\(B\)长为\(i\),对应的数组\(f\)状压后为\(s\)的方案数。

dp[0][0] = 1
for(i : 1 -> m)
for(s: 1 -> (1 << n) - 1)
for(c in {A, T, C, G})
dp[i][trans[s][c]] += dp[i - 1][s]
for(s: 1 -> (1 << n) - 1)
ans[cnt1(s)] += dp[m][s]

至此你就从DFS暴力一步步优化出了这道题的DP套DP解法!

AC代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 15, M = 1005, P = 1000000007;
int T, n, m, id[128], a[N];
int bcnt[1<<N], trans[1<<N][4], f[2][1<<N];
char str[N]; void init_trans(){
static int pre[N], cur[N];
for(int s = 0; s < (1 << n); s++){
if(s) bcnt[s] = bcnt[s >> 1] + (s & 1);
pre[0] = s & 1;
for(int i = 1; i < n; i++)
pre[i] = pre[i - 1] + (s >> i & 1);
for(int c = 0; c < 4; c++){
int t = 0;
cur[0] = pre[0];
if(c == a[0]) cur[0] = 1;
t |= cur[0];
for(int i = 1; i < n; i++){
cur[i] = max(cur[i - 1], pre[i]);
if(c == a[i]) cur[i] = max(cur[i], pre[i - 1] + 1);
t |= (cur[i] - cur[i - 1]) << i;
}
trans[s][c] = t;
}
}
}
void inc(int &x, int y){
x += y;
if(x >= P) x -= P;
}
void calc_f(){
int pre = 1, cur = 0;
memset(f[1], 0, sizeof(f[1]));
f[1][0] = 1;
for(int i = 0; i < m; i++){
for(int s = 0; s < (1 << n); s++)
f[cur][s] = 0;
for(int s = 0; s < (1 << n); s++)
if(f[pre][s]){
for(int c = 0; c < 4; c++)
inc(f[cur][trans[s][c]], f[pre][s]);
}
swap(pre, cur);
}
static int ans[N + 1];
for(int i = 0; i <= n; i++) ans[i] = 0;
for(int s = 0; s < (1 << n); s++)
inc(ans[bcnt[s]], f[pre][s]);
for(int i = 0; i <= n; i++)
write(ans[i]), enter;
} int main(){ id['A'] = 0, id['T'] = 1, id['C'] = 2, id['G'] = 3;
read(T);
while(T--){
scanf("%s%d", str, &m);
n = strlen(str);
for(int i = 0; i < n; i++)
a[i] = id[int(str[i])];
init_trans();
calc_f();
} return 0;
}

BZOJ 3864 Hero meet devil 超详细超好懂题解的更多相关文章

  1. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  2. bzoj 3864: Hero meet devil

    bzoj3864次元联通们 第一次写dp of dp (:з」∠) 不能再颓废啦 考虑最长匹配序列匹配书转移 由于dp[i][j]的转移可由上一行dp[i-1][j-1],dp[i-1][j],dp[ ...

  3. bzoj 3864: Hero meet devil(dp套dp)

    题面 给你一个只由\(AGCT\)组成的字符串\(S (|S| ≤ 15)\),对于每个\(0 ≤ .. ≤ |S|\),问 有多少个只由\(AGCT\)组成的长度为\(m(1 ≤ m ≤ 1000) ...

  4. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

  5. BZOJ 3864 Hero Meets Devil

    题目大意 给定一个由AGCT组成的串\(t\), 求对于所有的\(L \in [1, |t|]\), 有多少个由AGCT组成的串\(s\)满足\(LCS(s, t) = L\). Solution 传 ...

  6. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  7. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  8. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

  9. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

随机推荐

  1. c# create html table test

    string html = "<html><head><title>44444444</title>"; html += @&quo ...

  2. 利用matplotlib的plot函数实现图像绘制

    模式识别的一个实验,要求画出贝叶斯决策的图.这里我是利用python中的matplotlib库实现的图线的拟合.主要对于matplotlib的使用可以参照博客:webary 如果要绘制三维图像可以参考 ...

  3. html5录音支持pc和Android、ios部分浏览器,微信也是支持的,JavaScript getUserMedia

    以前在前人基础上重复造了一个网页录音的轮子,顺带把github仓库使用研究了一下,扔到了github上. 优势在于结构简单,可插拔式的录音格式支持,几乎可以支持任意格式(前提有相应的编码器):默认提供 ...

  4. Ubuntu16.04下安装破解secureCRT和secureFX的操作记录

    本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 16.04系统,现在微信.QQ.钉钉.WPS等都已支持linux版本,所以在Ubun ...

  5. Fedora 19关闭防火墙

    关闭防火墙systemctl stop firewalld.service 关闭开机启动防火墙systemctl disable firewalld.service

  6. 最好使用%f输出浮点数据,acm

    今天做题的时候发现使用%lf输出的时候总是wrong,而一旦改成%f就ac了,询问学长后知道,不要用%lf输出,浮点都用%f 然而我还是有疑惑,如果%f容不下输出的数据怎么办呢? 于是我就去百度 原来 ...

  7. C. Vasya and Multisets

    传送门 [http://codeforces.com/contest/1051/problem/C] 题意 给你一堆数,问是否可以分为两堆使得两堆里只出现一下的数字的种类相等,可以输出任意一种分的方式 ...

  8. 安装tesserocr错误(未解决)

    在win10下使用pip install tesserocr安装时,始终报错,未解决问题 解压tesserocr-2.2.2.tar.gz该文件夹后,查看setup.py文件,发现似乎model只能再 ...

  9. Opentsdb分布式安装

    Opentsdb分布式安装 --李琦 1.下载文件上传到虚拟机 -rw-r--r--.  1 root   root  76793860 Apr 27 10:56 opentsdb-2.2.0.tar ...

  10. 文件I/O操作

    熟悉文件的各种流类 了解字符的编码 掌握文件I/O操作的相关概念 了解对象的序列化 简单的引入 I:input  由外围输入到内存 O:output  由内存写出到外存. I/O:是相对于内存来说的 ...