洛谷题目传送门

球啊球 @xzz_233 qaq

高斯消元模板题,关键在于将已知条件转化为方程组。

可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机。

由高中数学知识可以知道,三点定圆(二维),四点定球(三维)······以此类推,应该是\(n+1\)个点才能确定一个\(n\)维空间下的球。

那么隐藏的另一个关键未知量在哪里呢?

想想圆的标准方程\((x-x_0)^2+(y-y_0)^2=r^2\),除了圆心坐标,半径不也对这个圆起到决定性作用么?

接下来,额外设一个未知量——球的半径\(r\),开始试着对条件式进行变换。

对于\(n+1\)个点,它们与球心的距离是定值\(r\),那么我们可以得到形式如下的\(n+1\)个方程(a为球面点坐标,x为球心坐标)

\[(a_1-x_1)^2+(a_2-x_2)^2+···+(a_n-x_n)^2=r^2
\]

显然我们要把已知量和未知量分开,于是展开,移项

\[a_1^2-2a_1x_1+x_1^2+a_2^2-2a_2x_2+x_2^2+···+a_n^2-2a_nx_n+x_n^2=r^2
\]

\[2a_1x_1+2a_2x_2+···+2a_nx_n+r^2-x_1^2-x_2^2-···-x_n^2=a_1^2+a_2^2+···+a_n^2
\]

发现\(r^2-x_1^2-x_2^2-···-x_n^2\)与\(a\)无关,所以考虑换元,设\(t=r^2-x_1^2-x_2^2-···-x_n^2\)(实际上我们并不用求\(r\))

终于,我们可以看到一个关于\(x_1,x_2,···,x_n,t\)的\((n+1)\)元方程组了,上高斯消元

具体实现看代码

#include<cmath>
#include<cstdio>
#define R register
#define init for(i=1;i<=n;++i)ne[i-1]=pr[i+1]=i
const int N=19;
int p[N],pr[N],ne[N];
double a[N][N];
int main(){
R int n,i,j,k,x;
R double mx,d;
scanf("%d",&n);++n;
init;//链表初始化,为了实现交换行
for(i=1;i<=n;++i){
for(j=1;j<n;++j){
scanf("%lf",&d);//处理系数
a[i][j]=d*2;a[i][n+1]+=d*d;
}
a[i][n]=1;//t的系数为1
}
for(k=1;k<=n;++k){
mx=0;//蒟蒻没有交换主元,而是交换行
//这样做防掉精度的效果可能不如交换主元
for(i=ne[0];i;i=ne[i])
if(mx<fabs(a[i][k]))
mx=fabs(a[i][k]),x=i;
d=a[p[k]=x][k];//选择当前a最大的一行
pr[ne[pr[x]]=ne[x]]=pr[x];
for(j=1;j<=n+1;++j)
a[x][j]/=d;
for(i=ne[0];i;i=ne[i])
for(d=a[i][j=k];j<=n+1;++j)
a[i][j]-=d*a[x][j];
}//高斯消元
init;
for(k=n;k;--k){
d=a[x=p[k]][n+1];
pr[ne[pr[x]]=ne[x]]=pr[x];
for(i=ne[0];i;i=ne[i])
a[i][n+1]-=d*a[i][k];
}//回代
for(k=1;k<n;++k)
printf("%.3f ",a[p[k]][n+1]);
puts("");
return 0;
}

洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)的更多相关文章

  1. [洛谷P4035][JSOI2008]球形空间产生器

    题目大意:给你$n$个点坐标,要你求出圆心 题解:随机化,可以随机一个点当圆心,然后和每个点比较,求出平均距离$r$,如果到这个点的距离大于$r$,说明离这个点远了,就给圆心施加一个向这个点的力:若小 ...

  2. BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)

    题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...

  3. 洛谷4035 JSOI2008球形空间产生器 (列柿子+高斯消元)

    题目链接 qwq 首先看到这个题,感觉就应该从列方程入手. 我们设给定的点的坐标矩阵是\(x\),然后球心坐标\(a_1,a_2....a_n\) 根据欧几里得距离公式,对于一个\(n维空间\)的第\ ...

  4. 洛谷 4035 [JSOI2008]球形空间产生器

    题目戳这里 一句话题意 给你 n+1 个 n 维点,需要你求出这个n维球的球心.(n<=10) Solution 这个题目N维的话确实不好想,反正三维就已经把我搞懵了,所以只好拿二维类比. 首先 ...

  5. 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元

    题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...

  6. 洛谷P4783 【模板】矩阵求逆(高斯消元)

    题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...

  7. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  8. 洛谷 P6030 - [SDOI2012]走迷宫(高斯消元+SCC 缩点)

    题面传送门 之所以写个题解是因为题解区大部分题解的做法都有 bug(u1s1 周六上午在讨论区里连发两个 hack 的是我,由于我被禁言才让 ycx 代发的) 首先碰到这种期望题,我们套路地设 \(d ...

  9. LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元

    问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...

随机推荐

  1. CF1060D Social Circle 排序

    题目传送门:http://codeforces.com/problemset/problem/1060/D 题意:有$N$个人,你要让他们坐成若干个圆环.他们每个人需要坐一把椅子,左手边至少要有$l_ ...

  2. IDC Digital Transition Annual Festival(2018.10.19)

    时间:2018.10.19地点:北京万达文化酒店

  3. HDU 3400

    一道很适合练习三分的题目三分套三分强不强 题意:给你平面上两条平行线段\(AB\)和\(CD\),一个人要从\(A\)走到\(D\),他在线段\(AB\)上的速度为\(P\),在\(CD\)上的速度为 ...

  4. Scala学习(八)---Scala继承

    Scala继承 摘要: 在本篇中,你将了解到Scala的继承与Java和C++最显著的不同.要点包括: 1. extends.final关键字和Java中相同 2. 重写方法时必须用override ...

  5. ElasticSearch实践系列(二):探索集群

    前言 为了方便ELK的逐步搭建,我们本篇文章先安装Kibana,然后用Kibana的DevTols执行命令.也可以安装elasticsearch-head运行命令. 安装Kibana 参考Instal ...

  6. ExtJS框架基础:事件模型及其常用功能

    前言 工作中用ExtJS有一段时间了,Ext丰富的UI组件大大的提高了开发B/S应用的效率.虽然近期工作中天天都用到ExtJS,但很少对ExtJS框架原理性的东西进行过深入学习,这两天花了些时间学习了 ...

  7. Ionic 2.0 相关资料

    原文发表于我的技术博客 本文汇总了学习 Ionic 2 的相关资料,也算是一个 Ionic Awesome 列表,供大家参考,有需要分享的可以留言. 原文发表于我的技术博客 1. 文档 1.1 Ion ...

  8. HDU-6440-费马小定理

    亏我前几天还学数论呢...没有深入研究费马小定理这个东西...做事情一定要静下心来啊... 题目要求满足(m+n)^p=m^p+n^p,要你定义一个封闭的新的加法和乘法运算 我们知道费马小定理中有两种 ...

  9. Personal Reading Assignment 2 -读推荐文章有感以及项目开发目前总结

    在经过个人作业和结对作业的磨练和现在正在进行的团队作业的考验中,我对自己软件开发的一点得失有了些许感悟,同时读了老师推荐的文章后,自己也是有了一些感受. 首先在“No Silver Bullet”一文 ...

  10. Notes of Daily Scrum Meeting(12.22)

    今天的团队任务总结如下: 团队成员 今日团队工作 陈少杰 进行网络连接的调试 王迪 优化搜索的算法 金鑫 准备前台的接口,查阅相关的资料 雷元勇 优化算法,对搜索进行测试 高孟烨 修改UI的接口,准备 ...