Description

  链接

Solution

  对于每个\(k\),统计任选\(k\)个点作为关键点的“最小生成树”的大小之和

  

  正向想法是枚举或者计算大小为\(x\)、叶子数目为\(y\)的子树有多少种,然后贡献答案。这种方法参数多、难统计,可以感受到无法适应\(1e5\)的数据,舍弃

  

  正难则反,自顶向下正向统计难,就考虑自底向上贡献统计。那么这里的自底向上,就应该是对于每一个点,统计其贡献到每个\(ans\)的次数,并累加。

  

  既然要输出k=1...m的答案,可以猜到贡献是一个卷积加速的形式

  

  所以先考虑每个点对某一个k的答案的贡献

  

  任选k个点之后,一个点对答案有1的贡献,当且仅当选择的点不全在以其为根时的某棵子树中

  

  这个很好统计,不全在某棵子树中这个条件很难考虑,不如直接用总数减去不合法的方案,毕竟所有元素用一个组合数就可以搞定\({n \choose k}-\sum_v {size_v\choose k}\)

  

  则

\[ans_k=\sum_{u=1}^n{n \choose k}-\sum_{v\in \text{sub}_u}{size_v \choose k}
\]

  前一部分可以直接算,但后一部分看起来不是一个数组的卷积

  

  遇到这种情况,我们可以用权值作为下标先做一个统计数组\(a[size_v]++\),因为统计时使用的数据与这个\(size_v\)具体是哪一个点的子树大小关系不大,而只和子树大小这个数值有关。因此不以每个点作为视角考虑(具体是谁不重要),而以整棵树为视角考虑,那么\(ans_k\)就会变成

\[ans_k=n{n\choose k}-\sum_{i=1}^{n-1}a_i{i \choose k}
\]

  减法卷积算出每个\(ans_k\)的负部分即可

Code

#include <cstdio>
using namespace std;
namespace IO{
const int S=10000000;
char buf[S];
int pos;
void load(){
fread(buf,1,S,stdin);
pos=0;
}
char getChar(){
return buf[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}
using IO::getInt;
const int N=200005;
const int MOD=924844033,G=5;
int n;
int h[N],tot;
struct Edge{
int v,next;
}e[N*2];
int size[N],sum[N];
int fact[N],iact[N];
inline void swap(int &x,int &y){
x^=y^=x^=y;
}
void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
n=getInt();
int u,v;
for(int i=1;i<n;i++){
u=getInt(); v=getInt();
addEdge(u,v);
}
}
void dfs(int u,int fa){
size[u]=1;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
dfs(v,u);
size[u]+=size[v];
sum[size[v]]++;
}
sum[n-size[u]]++;
}
int fmi(int x,int y){
int res=1;
for(;y;x=1ll*x*x%MOD,y>>=1)
if(y&1)
res=1ll*res*x%MOD;
return res;
}
void init(){
fact[0]=1;
for(int i=1;i<=n;i++)
fact[i]=1ll*fact[i-1]*i%MOD;
iact[0]=iact[1]=1;
if(n>1){
iact[n]=fmi(fact[n],MOD-2);
for(int i=n-1;i>=2;i--)
iact[i]=1ll*iact[i+1]*(i+1)%MOD;
}
}
inline int C(int n,int m){
return m>n?0:1ll*fact[n]*iact[m]%MOD*iact[n-m]%MOD;
}
namespace NTT{/*{{{*/
const int S=N*4,B=19;
int n,invn,bit;
int rev[S],W[S][2];
void build(){
int iG=fmi(G,MOD-2);
for(int i=0;i<=B;i++){
W[1<<i][0]=fmi(G,(MOD-1)/(1<<i));
W[1<<i][1]=fmi(iG,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=fmi(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int w_n,w,u,v;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<(i>>1);k++){
u=a[j+k];
v=1ll*w*a[j+(i>>1)+k]%MOD;
a[j+k]=(u+v)%MOD;
a[j+(i>>1)+k]=(u-v)%MOD;
w=1ll*w*w_n%MOD;
}
}
}
if(f)
for(int i=0;i<n;i++) a[i]=1ll*a[i]*invn%MOD;
}
}/*}}}*/
void solve(){
static int a[NTT::S],b[NTT::S];
for(int i=0;i<n;i++){
a[i]=1ll*sum[i]*fact[i]%MOD;
b[i]=iact[n-1-i];
}
NTT::init(n+n-1);
NTT::ntt(a,0);
NTT::ntt(b,0);
for(int i=0;i<NTT::n;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT::ntt(a,1);
// now a[n],a[n+1],... represent k=1,2,3,...
int ans;
for(int k=1;k<=n;k++){
ans=(1ll*n*C(n,k)%MOD-1ll*iact[k]*a[n-1+k]%MOD)%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
}
int main(){
IO::load();
NTT::build();
readData();
dfs(1,0);
init();
solve();
return 0;
}

【AGC005F】简单的问题 Many Easy Problems的更多相关文章

  1. AtcoderGrandContest 005 F. Many Easy Problems

    $ >AtcoderGrandContest \space 005 F.  Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...

  2. 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花

    题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...

  3. Codeforces 913D - Too Easy Problems

    913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...

  4. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  5. 【CodeForces】913 D. Too Easy Problems

    [题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...

  6. 【AGC005F】Many Easy Problems FFT 容斥原理

    题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...

  7. 【AGC005F】Many Easy Problems (NTT)

    Description ​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...

  8. AGC005F Many Easy Problems(NTT)

    先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...

  9. 【AGC005F】Many Easy Problems

    Description 题目链接 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 Solution 正向想法是枚举或者计算大小为\(x\).叶子数目 ...

随机推荐

  1. Docker 快速验证 HTML 导出 PDF 高效方案

    需求分析 项目中用到了 Echarts,想要把图文混排,当然包括 echarts 生成的 Canvas 图也导出 PDF. 设计和实现时,分析了 POI.iText.freemaker.world 的 ...

  2. Facebook React 和 Web Components(Polymer)对比优势和劣势

    目录结构 译者前言 Native vs. Compiled 原生语言对决预编译语言 Internal vs. External DSLs 内部与外部 DSLs 的对决 Types of DSLs - ...

  3. markdown操作手册

    **1.标题** # h1 h1自带分割线 ## h2 ### h3 #### h4 ##### h5 ###### h6 **2.圆点** - 圆点 **3.分割线,-和*都可以** --- *** ...

  4. ubuntu16.04在GTX1070环境下安装 cuda9.1

    设备要求 系统:Ubuntu16.04 显卡:GTX 1070 驱动:nvidia系列,显卡驱动的版本必须大于等于cuda的sh文件名里面的版本号 驱动可从 此处 下载,我已经整理好了 检查安装驱动 ...

  5. C#爬虫基本知识

    url编码解码 首先引用程序集System.Web.dll 如果要解码某个url的参数值的话,可以调用下面的方法: System.Web.HttpUtility.UrlDecode(string) 对 ...

  6. 这里已不再更新,访问新博客请移步 http://www.douruixin.com

    这里已不再更新,访问新博客请移步 http://www.douruixin.com

  7. 通过容器提交镜像(docker commit)以及推送镜像(docker push)笔记

    在本地创建一个容器后,可以依据这个容器创建本地镜像,并可把这个镜像推送到Docker hub中,以便在网络上下载使用. 查看镜像 [root@docker-test1 ~]# docker image ...

  8. Linux运维笔记-日常操作命令总结(1)

    在linux日常运维中,我们平时会用到很多常规的操作命令. 查看服务器的外网ip [root@redis-new01 ~]# curl ifconfig.me [root@redis-new01 ~] ...

  9. 701 C. They Are Everywhere

    链接 [http://codeforces.com/group/1EzrFFyOc0/contest/701/problem/C] 题意 给你一个包含大小写字母长度为n的字符串,让你找包含所有种类字符 ...

  10. 《Linux内核分析》实践4

    <Linux内核分析> 实践四--ELF文件格式分析 20135211李行之 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格 ...