BZOJ2839 : 集合计数 (广义容斥定理)
题目
一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集),
现在要在这 \(2^N\) 个集合中取出若干集合(至少一个),
使得它们的交集的元素个数为 \(K\) ,求取法的方案数,答案模 \(1000000007\) 。
\((1 \le N \le 10^6, 0 \le K \le N)\)
题解
又是一道 裸的 广义容斥定理 还没这道题难qwq
广义容斥定理 (二项式反演) :
\[\displaystyle b_k = \sum_{i=k}^n \binom i k a_i
\]\[\Updownarrow
\]\[\displaystyle a_k = \sum_{i=k}^{n} (-1)^{i-k} \binom i k b_i
\]
不难发现又是一个恰好 我们转化成至少就行了
那么交集有至少 \(i\) 个集合的个数 \(b_i\) 就是
\]
一开始我以为后面那个直接是 \(2^{n-i}\) .... 没过样例搜了波题解... 发现是 \(2^{2^{n-i}}\) qwq
为什么呢 我们这样考虑 当前枚举了一个大小为 \(i\) 交集后 还剩下 \(n-i\) 个元素
每个元素有选和不选的两种方案 那么共有 \(2^{n-i}\) 个互不相同的集合
那么每个集合我们又有选和不选两种方案 那么总共就是 \(2^{2^{n-i}}\) 种咯qwq
然后套上去 答案就是
\]
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("P2839.in", "r", stdin);
freopen ("P2839.out", "w", stdout);
#endif
}
typedef long long ll;
const ll Mod = 1e9 + 7;
ll fpm(ll x, int power) {
ll res = 1;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
}
const int N = 1e6;
ll fac[N + 100], ifac[N + 100], pow2[N + 100], ppow2[N + 100];
void Init(int maxn) {
fac[0] = ifac[0] = pow2[0] = ppow2[0] = 1;
For (i, 1, maxn) fac[i] = fac[i - 1] * i % Mod, pow2[i] = pow2[i - 1] * 2 % Mod, ppow2[i] = ppow2[i - 1] * 2 % (Mod - 1);
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1) % Mod;
}
ll ans = 0;
ll C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % Mod * ifac[n - m] % Mod;
}
int main () {
File();
Init(N);
int n = read(), k = read();
For (i, k, n)
(ans += Mod + ((i - k) & 1 ? -1 : 1) * (C(i, k) * C(n, i) % Mod * fpm(2, ppow2[n - i]) % Mod)) %= Mod;
printf ("%lld\n", ans);
return 0;
}
BZOJ2839 : 集合计数 (广义容斥定理)的更多相关文章
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ 2839: 集合计数 广义容斥
在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ2839】集合计数 组合数+容斥
[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...
- UVA-11806 Cheerleaders 计数问题 容斥定理
题目链接:https://cn.vjudge.net/problem/UVA-11806 题意 在一个mn的矩形网格里放k个石子,问有多少方法. 每个格子只能放一个石头,每个石头都要放,且第一行.最后 ...
- 51nod1284容斥定理
1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...
随机推荐
- CF666E Forensic Examination 广义SAM、线段树合并、倍增、扫描线
传送门 朴素想法:对\(M\)个匹配串\(T_1,...,T_M\)建立广义SAM,对于每一次询问,找到这个SAM上\(S[pl...pr]\)对应的状态,然后计算出对于每一个\(i \in [l,r ...
- React-使用imutable.js来管理store中的数据
reducer.js中store的数据是不能改变的,用原始的方法要手动的保证store不被修改,存在风险.imutable.js可以生成一个不可改变的对象,可以避免掉自己不小心修改掉store的情况. ...
- 【转】Influxdb 编译
编译针对当前 github上influxdb的master代码 其实github上的CONTRIBUTING.md 里已经说的很明白,按其一步步来开即开,唯一遇到的问题可能就是下载依赖时被墙无法下载, ...
- CSV文件解析
CSV(逗号分隔值文件格式) 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和 ...
- 通用漏洞评估方法CVSS3.0简表
CVSS3.0计算分值共有三种维度: 1. 基础度量. 分为 可利用性 及 影响度 两个子项,是漏洞评估的静态分值. 2. 时间度量. 基础维度之上结合受时间影响的三个动态分值,进而评估该漏洞的动态分 ...
- 基于SimpleChain Beta的跨链交互与持续稳态思考
1. 区块链扩展性迷局 比特币作为第一个区块链应用与运行到目前为止最被信任的公链,其扩展性问题却持续被作为焦点贯穿着整个链的发展周期.事实上,在2009年1月4日比特币出现的那一天到2010年10月1 ...
- bash处理一条命令的步骤
Shell执行一条命令步骤 参考链接: <Learning the bash Shell, 3rd Edition -- 7.3. Command-Line Processing> &l ...
- Python练习之用户登录-5
格式化输出 %s %d %% 编码: ascii 只能显示英文,特殊字符,数字. 万国码:unicode 最开始16位,中文不够32位 4个字节. 占用资源多. 升级:utf-8 utf-16 utf ...
- 五子棋游戏SRS
一.功能需求 1.绘制棋子 2.绘制界面 3.绘制棋盘 4.实现通过鼠标下棋并判断棋子是否落在棋盘上 6.判断胜负 二.用例图 玩家用例图: 1.落子:玩家鼠标点击最近的落子点落子.2.电脑先落子:选 ...
- Github知识小结
软件:计算机运行所需要的各种程序和数据的总成,包括操作系统,汇编语言,编译,程序,数据库,文字编辑和维护使用手册等. 软件的特性:(1)软件产品的主要生产是脑力劳动,还没有摆脱手工开发方式(2)软件是 ...