【刷题】BZOJ 1132 [POI2008]Tro
Description
平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000
Input
第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000]
Output
保留一位小数,误差不超过0.1
Sample Input
5
0 0
1 2
0 2
1 0
1 1
Sample Output
7.0
Solution
\(ans=\frac{1}{2}\sum_{i=1}^n\sum_{j=i+1}^n\sum_{k=j+1}^n|(y_j-y_i)(x_k-x_i)-(y_k-y_i)(x_j-x_i)|\)
枚举第一个点,求出其它点的相对坐标
然后为了去绝对值,让所有点按计较排序,保证叉积是正的
\(ans_i=\frac{1}{2}\sum_{j=i+1}^n\sum_{k=j+1}^ny_j*x_k-y_k*x_j\)
\(~~~~~~~~~=\frac{1}{2}(\sum_{j=i+1}^ny_j\sum_{k=j+1}^nx_k-\sum_{j=i+1}^nx_j\sum_{k=j+1}^ny_k)\)
对最后的 \(\sum\) 做前缀和就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=3000+10;
int n,cnt;
ld ans;
struct point{
int x,y;
inline bool operator < (const point &A) const {
return y<A.y;
};
};
point pt[MAXN];
struct cross{
int x,y;
ld k;
inline bool operator < (const cross &A) const {
return k>A.k;
};
};
cross cs[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);
REP(i,1,n)read(pt[i].x),read(pt[i].y);
std::sort(pt+1,pt+n+1);
REP(i,3,n)
{
REP(j,1,i-1)cs[j]=(cross){pt[i].x-pt[j].x,pt[i].y-pt[j].y,atan2((ld)(pt[i].x-pt[j].x),(ld)(pt[i].y-pt[j].y))};
std::sort(cs+1,cs+i);ld sx=0,sy=0;
REP(j,1,i-1)
{
if(j!=1)ans+=sx*(ld)cs[j].y-(ld)cs[j].x*sy;
sx+=(ld)cs[j].x,sy+=(ld)cs[j].y;
}
}
printf("%.1Lf\n",ans/2);
return 0;
}
【刷题】BZOJ 1132 [POI2008]Tro的更多相关文章
- bzoj 1132 [POI2008]Tro 几何
[POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1796 Solved: 604[Submit][Status][Discu ...
- bzoj 1132 POI2008 Tro
大水题=_=,可我想复杂了…… 很裸的暴力,就是加了个小优化…… 叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了 去绝对值加个极角排序,每次 ...
- BZOJ.1132.[POI2008]Tro(极角排序)
BZOJ 洛谷 考虑暴力,每次枚举三个点,答案就是\(\frac12\sum_{k<j<i}(i-k)\times(j-k)\). 注意到叉积有分配率,所以固定\(k\),枚举\(i,j\ ...
- BZOJ 1132 [POI2008]Tro(极角排序)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...
- bzoj 1132: [POI2008]Tro 计算几何
题目大意: 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 题解 我们看到了n的范围,于是我们就知道这一定不是一个线性算法 所以我们尝试枚举三角形的一个点,那么我们现 ...
- 【BZOJ】1132: [POI2008]Tro
题意 给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和. 分析 首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组 ...
- BZOJ1132: [POI2008]Tro
1132: [POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 815 Solved: 211[Submit][Status] ...
- bzoj1132[POI2008]Tro 计算几何
1132: [POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1722 Solved: 575[Submit][Status] ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
随机推荐
- ASP.NET Core 中 HttpContext 详解与使用 | Microsoft.AspNetCore.Http 详解 (转载)
“传导体” HttpContext 要理解 HttpContext 是干嘛的,首先,看图 图一 内网访问程序 图二 反向代理访问程序 ASP.NET Core 程序中,Kestrel 是一个基于 li ...
- 【转】Raft 为什么是更易理解的分布式一致性算法
编者按:这是看过的Raft算法博客中比较通俗的一篇了,讲解问题的角度比较新奇,图文并茂,值得一看.原文链接:Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了 ...
- linux监控文件夹内的文件数量
开发的时候遇到一个问题,服务器一旦重启,项目生成的文件就丢失了,感觉很莫名其妙..一开始猜测是文件流没有关闭,检查了代码,感觉没毛病.于是先看看是关机丢失了文件还是开机被删除了.下面的脚本每秒执行一次 ...
- 画了一张基于Spring Cloud的微服务系统架构图
- Mvc_ActionResult返回值
//ViewResult 表示HTML的页面内容 //EmptyResult 表示空白的页面内容 //RedirectResult 表示定位到另外一个URL //JsonResult 表示可以运用到A ...
- LVM : 扩展文件系统的容量
如果发现文件系统的容量不足了,可以通过 LVM 轻松的进行扩展(当然也可以进行缩减操作).本文将紧接前文中的 demo 详细的介绍扩展文件系统的操作过程.说明:本文的演示环境为 ubuntu 16.0 ...
- 如何解决jersey框架中以json格式返回数组,当数组中元素一个时json格式不对
原文地址:http://www.cnblogs.com/swpk/p/3566536.html?utm_source=tuicool jersey 是oracle 出的一个较好的REST框架.使用此框 ...
- python-lambda用法
前言: lambda函数也叫匿名函数,即,函数没有具体的名称. 一.基础 lambda语句构建的其实是一个函数对象.匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果 ...
- Kruskal算法-HDU1863畅通工程
链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1863] 题意 Problem Description 省政府"畅通工程"的目标是使全 ...
- 软工个人博客作业Week 1
问题1:在瀑布模型中提到模型,模型(模拟版本)和原型有什么不同,如果与原型有同样的功能,那为什么称之为模型?如果没有同样的功能,又是怎么测试那些程序的? 问题2:怎样才能高效率的广泛而深入地了解用户的 ...