题目描述

给定一棵n个点的带权树,结点下标从1开始到N。寻找树中找两个结点,求最长的异或路径。
异或路径指的是指两个结点之间唯一路径上的所有边权的异或。

分析

处理出各个节点到根节点的异或距离,然后我们将这个异或距离放到01字典树中。
考虑一个贪心,我们每次查找都找与目标串当前为相反的,也就是反着跳,如果只有相同的,那么就跳相同。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
#define N 100005
struct edge {
    int to, nt, w;
}E[N << 1];
int tr[4000005][3];
int cnt, tot, n, rt;
int H[N], dist[N];
bool vis[N];
void add_edge(int u, int v, int w) {
    E[++ cnt] = (edge){v, H[u], w};
    H[u] = cnt;
}
void dfs(int u, int dis) {
    vis[u] = 1;
    dist[u] = dis;
    for (int e = H[u]; e; e = E[e].nt) {
        int v = E[e].to;
        if (vis[v]) continue;
        dfs(v, dis ^ E[e].w);
    }
}
void insert(int x) {
    int p = 1;
    for (int i = 30; i >= 0; i --) {
        int k = (x >> i) & 1;
        if (tr[p][k] == 0) tr[p][k] = ++tot;
        p = tr[p][k];
    }
}
int find(int x) {
    int p = 1, res = 0;
    for (int i = 30; i >= 0; i --) {
        int k = (x >> i) & 1;
        if (tr[p][k ^ 1] != 0) {
            res += (1 << i);
            p = tr[p][k ^ 1];
        }
        else p = tr[p][k];
    }
    return res;
}
int main() {
    ms(vis, 0);
    read(n);
    rt = 1;
    for (int i = 1; i < n; i ++) {
        int u, v, w;
        read(u); read(v); read(w);
        add_edge(u, v, w);
        add_edge(v, u, w);
    }
    dfs(rt, 0);
    int ans = 0;
    tot = 1;
    for (int i = 1; i <= n; i ++) {
        insert(dist[i]);
        ans = max(ans, find(dist[i]));
    }
    printf("%d\n", ans);
    return 0;
}

[luogu4551][POJ3764]最长异或路径的更多相关文章

  1. [POJ3764]最长异或路径

    Description: 给定一棵n个点的带权树,结点下标从1开始到N.寻找树中找两个结点,求最长的异或路径. Hint: \(n<=10^5\) Solution: 真是01Trie傻逼题,居 ...

  2. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  3. luoguP4551最长异或路径

    P4551最长异或路径 链接 luogu 思路 从\(1\)开始\(dfs\)求出\(xor\)路径.然后根据性质\(x\)到\(y\)的\(xor\)路径就是\(xo[x]^xo[y]\) 代码 # ...

  4. 【ybt高效进阶2-4-3】【luogu P4551】最长异或路径

    最长异或路径 题目链接:ybt高效进阶2-4-3 / luogu P4551 题目大意 给定一棵 n 个点的带权树,结点下标从 1 开始到 N.寻找树中找两个结点,求最长的异或路径. 异或路径指的是指 ...

  5. 01Trie【p4551(poj3764)】 最长异或路径

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 个人: 首先强推一下01字典树(T ...

  6. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  7. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  8. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  9. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

随机推荐

  1. 使用Topshelf管理Windows服务

    目的:以控制台方式开发Windows服务程序,调试部署方便. https://www.cnblogs.com/itjeff/p/8316244.html https://www.cnblogs.com ...

  2. JavaScript如何实现继承

    // 原型方式的'继承' function Person(name) { //定义一个Person的构造函数 this.name = name; //添加属性 } Person.prototype.s ...

  3. RocketMQ 简单梳理 及 集群部署笔记

    一.RocketMQ 基础知识介绍Apache RocketMQ是阿里开源的一款高性能.高吞吐量.队列模型的消息中间件的分布式消息中间件. 上图是一个典型的消息中间件收发消息的模型,RocketMQ也 ...

  4. 【2016.3.18】作业 VS2015安装&单元测试(2)

  5. BugPhobia团队篇章:团队管理与Github源代码管理说明

    0x00:序言 To the searching tags, you may well fall in love withhttp://xueba.nlsde.buaa.edu.cn/ 再见,无忧时光 ...

  6. linux及安全第八周总结

    进程的调度时机与进程的切换 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已. 对于理解操作系统的工作机制,反而是进程的调 ...

  7. 转发:Android开发?用C#!!

    转发自 最近偶然在QQ技术群里见到有人提起用C#开发Android,当时我感觉到很诧异:Android不是只能用Java开发吗?何时可以使用C#了?那个群友便告知我:mono. 百度一下吧!搜到了mo ...

  8. There are no enabled repos.

    今天要记录一下自己懵逼的一天,原来自己是Ubuntu系统,还以为是centos,导致命令错了 There are no enabled repos. Run "yum repolist al ...

  9. Ehcache Monitor使用一例

    场景介绍:系统集成Shiro,使用Ehcache保存用户登录限制次数,常有用户密码被锁,影响工作效率. 在不考虑集成SSO,LDAP,也不引入身份校验,邮件,短信等解锁特性下.使用Ehcache Mo ...

  10. Oracle 数据库启动过程

    一 启动数据库 Oracle启动过程涉及几种模式,这些模式涉及不同的文件,每个状态下数据库做不同的事情,同时这些模式适用于不同的维护需求,主要的模式有三种:NOMOUNT.MOUNT.OPEN. 1 ...