Luogu 1080 【NOIP2012】国王游戏 (贪心,高精度)
Luogu 1080 【NOIP2012】国王游戏 (贪心,高精度)
Description
恰逢H国国庆,国王邀请n位大臣来玩一个有奖游戏。首先,他让每个大臣在左、右手上面分别写下一个整数,国王自己也在左、右手上各写一个整数。然后,让这 n位大臣排成一排,国王站在队伍的最前面。排好队后,所有的大臣都会获得国王奖赏的若干金币,每位大臣获得的金币数分别是:排在该大臣前面的所有人的左手上的数的乘积除以他自己右手上的数,然后向下取整得到的结果。
国王不希望某一个大臣获得特别多的奖赏,所以他想请你帮他重新安排一下队伍的顺序,使得获得奖赏最多的大臣,所获奖赏尽可能的少。注意,国王的位置始终在队伍的最前面。
Input
第一行包含一个整数 n,表示大臣的人数。
第二行包含两个整数a和b,之间用一个空格隔开,分别表示国王左手和右手上的整数。
接下来n行,每行包含两个整数a和b,之间用一个空格隔开,分别表示每个大臣左手和右手上的整数。
Output
输出只有一行,包含一个整数,表示重新排列后的队伍中获奖赏最多的大臣所获得的金币数。
Sample Input
3
1 1
2 3
7 4
4 6
Sample Output
2
Http
Luogu:https://www.luogu.org/problem/show?pid=1080
Source
贪心,高精度
题目大意
给出若干组二元组(a,b),对于一种排列方式,定义第i个二元组的花费为前面所有人的a之积除以第i个的b。现在要求求一种排列方式,使得其中最大的花费最小。
解决思路
我们来考虑排序方式。对于\(\forall\)两个人\(A,B\),设\(A\)的左手为\(A_l\),右手为\(A_r\),\(B\)同理。现在假设\(A与B\)是相邻的,他们前面的所有人的左手乘积为\(P\)。则有
顺序 | A的花费 | B的花费 |
---|---|---|
A在前 | \(\frac{T}{A_r}\) | \(\frac{T*A_l}{B_r}\) |
B在前 | \(\frac{T*B_l}{A_r}\) | \(\frac{T}{B_r}\) |
那么我们如何排列\(A和B\)呢?那一定取决于上面表格中的两行中的最大值。而因为所有的数都是整数,所以我们可以知道\(\frac{T}{A_r}\)与\(\frac{T}{B_r}\)是不可能成为最大值的。
所以我们考虑\(\frac{T*A_l}{B_r}\)和\(\frac{T*B_l}{A_r}\)。
当\(\frac{T*A_l}{B_r} > \frac{T*B_l}{A_r}\)时,经过恒等变换,我们可以得到\(A_l*A_r>B_l*B_r\)也就是说,当A的左右手乘积大于B的左右手乘积时,我们把B排在前面会更优。
那么\(\frac{T*A_l}{B_r} < \frac{T*B_l}{A_r}\)是否也满足呢?我们发现是满足的。
也就是说,最优的排列方式为将人按照左右手乘积升序排序。至于求解其中的最大值,只要从1开始做一遍就可以啦。
最后需要注意的是,本题需要高精度。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define mem(Arr,x) memset(Arr,x,sizeof(Arr))
const int maxN=2000;
const int maxNum=5000;
const int inf=2147483647;
#define ll long long
class People//定义一个关于人的结构体,方便按照左右手乘积排序
{
public:
ll l,r;
};
bool operator < (People A,People B)//定义比较
{
return A.l*A.r<B.l*B.r;
}
class BigInteger//定义高精度
{
public:
int siz;
ll Num[maxNum];
BigInteger();
BigInteger(int x);
BigInteger(ll x);
void operator = (int B);
bool operator == (int B);
bool operator == (BigInteger B);
BigInteger operator + (BigInteger B);
BigInteger operator * (ll B);
BigInteger operator / (ll B);
};
ostream& operator << (ostream & os,BigInteger A)//重载输出运算符方便输出
{
if (A.siz==0)
{
os<<0;
return os;
}
for (int i=A.siz;i>=1;i--)
os<<A.Num[i];
return os;
}
bool operator < (BigInteger A,BigInteger B)//重载小于运算符
{
if (A.siz<B.siz)
return 1;
if (A.siz>B.siz)
return 0;
for (int ii=A.siz;ii>=1;ii--)
{
if (A.Num[ii]>B.Num[ii])
return 0;
if (A.Num[ii]<B.Num[ii])
return 1;
}
}
ll n;
People P[maxN];
ll read();
int main()//主程序
{
n=read();
P[0].l=read();
P[0].r=read();
for (int i=1;i<=n;i++)
{
P[i].l=read();
P[i].r=read();
}
sort(&P[1],&P[n+1]);//将人排序
BigInteger ret=P[0].l;//ret即前面所有人左手的乘积
BigInteger Ans=0;//Ans记录最大的
for (int i=1;i<=n;i++)//依次计算
{
Ans=max(Ans,ret/P[i].r);
ret=ret*P[i].l;
}
cout<<Ans<<endl;
return 0;
}
ll read()
{
ll x=0;
char ch=getchar();
while ((ch<'0')||(ch>'9'))
ch=getchar();
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x;
}
//以下就是高精度的重载
BigInteger::BigInteger()
{
siz=0;
mem(Num,0);
}
BigInteger::BigInteger(int B)
{
siz=0;
mem(Num,0);
while (B!=0)
{
siz++;
Num[siz]=B%10;
B=B/10;
}
}
BigInteger::BigInteger(ll B)
{
siz=0;
mem(Num,0);
while (B!=0)
{
siz++;
Num[siz]=B%10;
B=B/10;
}
}
void BigInteger::operator = (int B)
{
siz=0;
mem(Num,0);
while (B!=0)
{
siz++;
Num[siz]=B%10;
B=B/10;
}
}
bool BigInteger::operator == (BigInteger B)
{
if (siz!=B.siz)
return 0;
for (int ii=1;ii<=siz;ii++)
if (Num[ii]!=B.Num[ii])
return 0;
return 1;
}
bool BigInteger::operator == (int B)
{
BigInteger A(B);
if (A==B)
return 1;
return 0;
}
BigInteger BigInteger::operator + (BigInteger B)
{
BigInteger Ans;
Ans.siz=max(siz,B.siz);
for (int ii=1;ii<=Ans.siz;ii++)
Ans.Num[ii]=Num[ii]+B.Num[ii];
for (int ii=1;ii<Ans.siz;ii++)
{
Ans.Num[ii+1]+=Ans.Num[ii]/10;
Ans.Num[ii]%=10;
}
while (Ans.Num[Ans.siz]>=10)
{
Ans.Num[Ans.siz+1]+=Ans.Num[Ans.siz]/10;
Ans.Num[Ans.siz]%=10;
Ans.siz++;
}
return Ans;
}
BigInteger BigInteger::operator * (ll B)
{
BigInteger Ans;
for (int ii=1;ii<=siz;ii++)
Ans.Num[ii]=1ll*Num[ii]*(ll)(B);
Ans.siz=siz;
for (int ii=1;ii<Ans.siz;ii++)
{
Ans.Num[ii+1]+=Ans.Num[ii]/10;
Ans.Num[ii]%=10;
}
while (Ans.Num[Ans.siz]>=10)
{
Ans.Num[Ans.siz+1]+=Ans.Num[Ans.siz]/10;
Ans.Num[Ans.siz]%=10;
Ans.siz++;
}
return Ans;
}
BigInteger BigInteger::operator / (ll B)
{
BigInteger Ans;
int res=0;
for (int ii=siz;ii>=1;ii--)
{
res=res*10+Num[ii];
Ans.Num[ii]=res/B;
res=res%B;
}
Ans.siz=siz;
while (Ans.Num[Ans.siz]==0)
Ans.siz--;
return Ans;
}
Luogu 1080 【NOIP2012】国王游戏 (贪心,高精度)的更多相关文章
- [noip2012]国王游戏<贪心+高精度>
题目链接: https://vijos.org/p/1779 https://www.luogu.org/problem/show?pid=1080 http://codevs.cn/problem/ ...
- 洛谷P1080(NOIP2012)国王游戏——贪心排序与高精度
题目:https://www.luogu.org/problemnew/show/P1080 排序方法的确定,只需任取两个人,通过比较与推导,可以得出ai*bi小的人排在前面: 高精度写的时候犯了些细 ...
- 【NOIP2012提高组】国王游戏 贪心 + 高精度
题目分析 题目答案不具有单调性,所以不可以二分,转而思考贪心.因为无法确定位置,所以考虑如何才能让对于每一个$1 ~ i$使得$i$的答案最大,即$1 ~ i$最后一个最优.若设对于位置$i$,$a[ ...
- P1080 国王游戏 贪心 高精度
题目描述 恰逢 HH国国庆,国王邀请nn 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 nn 位大臣排成一排,国王站在队伍的 ...
- P1080 【NOIP 2012】 国王游戏[贪心+高精度]
题目来源:洛谷 题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王 ...
- Luogu P1080 [NOIP2012]国王游戏
题目 按\(a_i*b_i\)升序排序即可. 证明考虑交换法. 对于排序后相邻的两个人\(i,j(a_ib_i\le a_jb_j)\),设前面的总的积为\(s\),则当前答案为\(\max(\fra ...
- Luogu P1080国王游戏(贪心)
国王游戏 题目链接:国王游戏 ps:题目数据说明了要写高精度. 这个题的答案是\(a.l * a.r < b.l * b.r\)按照这个进行排序 题解中大部分只是如何证明排序是: \(a.l * ...
- NOIP2012 国王游戏
2国王游戏 (game.cpp/c/pas) [问题描述] 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数 ...
- NOIP2012国王游戏(60分题解)
题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王站在队伍的最前面 ...
- 继续写高精!noip2012国王游戏。。。
国王游戏 题目描述: 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王 ...
随机推荐
- easyui datagrid remoteSort的实现 Controllers编写动态的Lambda表达式 IQueryable OrderBy扩展
EF 结合easy-ui datagrid 实现页面端排序 EF动态编写排序Lambda表达式 1.前端页面 var mainListHeight = $(window).height() - 20; ...
- Centos7系统下修改主机名操作笔记
习惯了在Centos6系统下修改主机名的操作,但是Centos7下修改主机名的操作却大不相同!操作笔记如下: 在CentOS中,有三种定义的主机名:静态的(static),瞬态的(transient) ...
- B. Interesting drink
链接 [http://codeforces.com/group/1EzrFFyOc0/contest/706/problem/B] 题意 给你n个数,q次查询,每次输入一个m,问n个数中有多少个数小于 ...
- 对wordcount单词字母部分的修改
原始代码: int s; s = ch; switch (s) { case 'a':letter[0]++; break; case 'b':letter[1]++; break; case 'c' ...
- 12.11 Daily Scrum
Today's Task Tomorrow's Task 丁辛 实现和菜谱相关的餐厅列表. 实现和菜谱相关的餐厅列表. 邓亚梅 美化搜索框UI. 美 ...
- 实践——ELF文件格式分析
一.分析文件头 1. 段入口类型定义(/usr/include/elf.h)下面产生的hello是32位的 使用命令#Hexdump –x ELF_1.o 第一行: 前4字节,蓝色部分,是一个魔数,表 ...
- PHP使用cookie时遇到的坑
先看这么一段代码 第一次运行该程序的结果如下图: 然后我刷新了一次,运行结果如下图 你如果不细心,一定没发现,第二次运行的last time的值,正是第一次运行时保存的值. 先看代码,如果$_COOK ...
- How to leave the open file in eclipse tab after search?
https://superuser.com/questions/130353/how-to-leave-the-open-file-in-eclipse-tab-after-search From m ...
- Server Tomcat v7.0 Server at libra failed to start
https://stackoverflow.com/questions/13244233/server-tomcat-v7-0-server-at-localhost-failed-to-start- ...
- OneZero——Review会议(2013.5.20)
1. 时间: 2016年5月20日. 2. 成员: X 夏一鸣 * 组长 (博客:http://www.cnblogs.com/xiaym896/), G 郭又铭 (博客:http://www.cnb ...