巨难!!!

去年六省联考唯一的一道黑牌题,我今天一天从早到晚,把它从暴力15分怼到了90分,极端接近正解了。

bzoj上A了,但是洛谷和loj上面就不行。伪正解会T,奇奇怪怪的类正解会WA。。

那么,网上的题解多得很,我就不细说了。

着重说一下我的理解感受和坑点。

1.不愧是黑牌题,显得十分的繁杂(并不)。

首先要用到扩展欧拉定理,φ(),还有线段树辅助,快速幂,大量奇奇怪怪的小细节.....要人命啊。

2.根据之前那题上帝集合,我们可以得知当一个数被操作很多很多很多很多次之后就不变了,成为一个常数。

3.我们首先算出这个次数:phi()到1就是了。特别的,phi(2)=1之后还要再写个phi(1)=1,否则会错。证明网上也很多,我比较推崇这个。(该证明并没有被再次找到......)

4.第一个坑点来了:(c^c^i)%p ≠ (c^((c^i)%p))%p 什么意思呢?意思就是你改一次之后不能接着改第二次,会WA。打暴力时就是这一点卡停了我的思路。如何解决:真·暴力!从初始值a[i]开始重新改起。我:......

5.解决了上面那一件事之后,我们开始着手研究扩展欧拉公式降次的那个式子。把(c^c^i)%p化开之后再一步步推下去,最后我们可以得到这么一个可爱的函数:

 LL cal(int k,int t)
{
while(t>)
{
if(k>=p[t]) k=qpow(c,k%p[t]+p[t],p[t-]);
else k=qpow(c,k,p[t-]);
t--;
}
return k;
}

初等cal函数

看,它是如此的Cuty and goffy(?),这里有个p[]数组,是之前预处理出来的每一层phi(P)。

6.然后加上一个线段树,它滋磁区间求和,区间修改(每次修改到底),并记录一个times表示修改的次数。

7.当某次修改时,如果times已经=cnt了,就return。否则修改,update。

8.开开心心的一交,又WA又T......

9.仔细观察发现:那个可爱的cal中的判断条件if(k>=p[t])显然有误。原因是计算卡速米(kasumi)时已经把结果%p[t-1]了,而上一层的p[t-1]就是这一层的p[t],于是那个if不会触发。

10.翻看胡雨菲的题解,发现他把kasumi改了下,在kasumi里记录flag,保证了正确性。

11.交上去:T了两个点。90分,bzojAC。本着不放弃不抛弃的原则继续调试,发现要优化掉kasumi的时间复杂度,预处理一下。

12.那么怎么确定flag呢?①也预处理好。②每次在cal里记录一个tag,然后用log c p[t]<=tag来判定。

13.首先写①,写炸了。然后写②,解决了T但是又WA了,依旧90分。然后转①,继续炸。但是理论上两种方法都能AC。

14.over。

WA的代码就不放了。放个11.中的代码。

 #include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = ;
LL a[N],sum[N<<],times[N<<],p[N],c,P,cnt;
inline LL read()
{
LL ans=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='') {ans=ans*;ans+=(ch-'');ch=getchar();}
return ans*f;
}
inline LL qpow(LL a,LL b,LL m,bool &flag)
{
LL ans=;
flag=;
while(b)
{
if(b&)
{
ans=ans*a;
if(ans>=m) flag=,ans%=m;
}
b=b>>;
a=a*a;
if(a>=m) flag=,a%=m;
}
return ans;
}
inline LL phi(LL x)
{
LL ans=x;
for(register int i=;i*i<=x;i++)
{
if(x%i==)
{
while(x%i==) x/=i;
ans=(ans/i)*(i-);
}
}
if(x>) ans=(ans/x)*(x-);
return ans;
}
inline void pre()
{
p[]=P;
while(P>)
{
p[++cnt]=phi(P);
P=p[cnt];
}
p[++cnt]=;
P=p[];
return;
}
inline void update(LL l,LL r,LL o)
{
sum[o]=sum[o<<]+sum[o<<|];
times[o]=min(times[o<<],times[o<<|]);
return;
}
inline void build(LL l,LL r,LL o)
{
if(l==r)
{
sum[o]=a[r]%P;
return;
}
int mid=(l+r)>>;
build(l,mid,o<<);
build(mid+,r,o<<|);
update(l,r,o);
return;
}
inline LL cal(int k,int t)
{
bool flag=(k>=p[t]);
while(t>)
{
if(flag) k=qpow(c,k%p[t]+p[t],p[t-],flag);
else k=qpow(c,k,p[t-],flag);
t--;
}
return k;
}
inline void add(int L,int R,int l,int r,int o)
{
if(times[o]>=cnt) return;
if(l==r)
{
times[o]++;
sum[o]=cal(a[r],times[o]);
return;
}
int mid=(l+r)>>;
if(L<=mid) add(L,R,l,mid,o<<);
if(mid<R) add(L,R,mid+,r,o<<|);
update(l,r,o);
return;
}
inline LL ask(int L,int R,int l,int r,int o)
{
if(L<=l&&r<=R) return sum[o];
if(R<l||r<L) return ;
int mid=(l+r)>>;
return (ask(L,R,l,mid,o<<)+ask(L,R,mid+,r,o<<|))%P;
}
int main()
{
LL m,n;
//scanf("%lld%lld%lld%lld",&n,&m,&P,&c);
n=read();m=read();P=read();c=read();
for(register int i=;i<=n;i++) a[i]=read();//scanf("%lld",&a[i]);
pre();
build(,n,);
LL flag,x,y;
for(register int i=;i<=m;i++)
{
//scanf("%d%d%d",&flag,&x,&y);
flag=read();
x=read();y=read();
if(flag) printf("%lld\n",ask(x,y,,n,));
else add(x,y,,n,);
}
return ;
}

90分代码

题外话:可以看见我加了很多的常数优化,但是洛谷的#9和#11两个点剧毒。关于WA就放个链接吧,可以看出#3和#11比较毒,每次WA都有你们。

15分暴力->90分花了我一个上午。之后下午晚上都在优化那最后10分,还没搞出来。效率堪忧啊。其实可以搞一搞其他几道题的。

明天就是省选了。敬请收看:省选酱油记

P3747 相逢是问候 欧拉定理+线段树的更多相关文章

  1. 【BZOJ4869】相逢是问候(线段树,欧拉定理)

    [BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...

  2. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  3. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  4. SHOI 2017 相逢是问候(扩展欧拉定理+线段树)

    题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...

  5. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  6. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

  7. 【BZOJ4869】相逢是问候 [线段树][欧拉定理]

    相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Informatikverbin ...

  8. 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理

    Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...

  9. LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)

    题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...

随机推荐

  1. MySQL数据库服务器(YUM)安装

    1. 概述2. 部署过程2.1 虚拟机console的NFS服务端配置2.2 虚拟机node15的NFS客户端配置2.3 虚拟机安装MySQL环境2.4 配置MySQL3. 错误及解决3.1 启动失败 ...

  2. Dethe is my Finaunce金融

    英国诗人乔叟Dethe is my Finaunce金融 英语中“金融”在14世纪,金融计算时间价值的手段.就随机结果签约的能力.一个允许转让金融权后的清算.<Lamentation of Ma ...

  3. Ubuntu16.04下安装破解secureCRT和secureFX的操作记录

    本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 16.04系统,现在微信.QQ.钉钉.WPS等都已支持linux版本,所以在Ubun ...

  4. centos7下安装php+memcached简单记录

    1)centos7下安装php 需要再添加一个yum源来安装php-fpm,可以使用webtatic(这个yum源对国内网络来说恐怕有些慢,当然你也可以选择其它的yum源) [root@nextclo ...

  5. BZOJ3782 上学路线

    设障碍个数为,\(obs\)则一般的容斥复杂度为\(O(2^{obs})\).但因为这个题是网格图,我们可以用DP解.设\(f[i]\)表示不经过任何障碍到达第\(i\)个障碍的方案数,转移时枚举可以 ...

  6. D. Mysterious Crime

    链接 [http://codeforces.com/contest/1043/problem/D] 题意 给你一个m*n的矩阵(m<=10,n<=1e5), 每一行的数字是1到n里不同的数 ...

  7. eclipse中git的author和commiter的修改

    项目目录,隐藏的文件.git的文件夹,config文件 eclipse-->右击项目--showin--system explorer.git 打开config文件加上 [user] name ...

  8. Mac+Docker环境下xdebug的配置

    由于容器化的需要,前几天我本地也换成了docker环境.就研究了一下docker环境下phpstorm和xdebug的配置. http://www.mmfei.com/?p=453 这个博客给出了一个 ...

  9. PAT L3-021 神坛

    https://pintia.cn/problem-sets/994805046380707840/problems/994805046577840128 在古老的迈瑞城,巍然屹立着 n 块神石.长老 ...

  10. SpringMVC一例 是否需要重定向

    在ASP.NET MVC下: return view("List") 和 return RedirectToAction("List") 百度知道的最佳答案: ...