Dijstra算法求最短路径
参考博客:http://blog.51cto.com/ahalei/1387799
将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。
设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。
在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。
重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。
#include<cstring>
#include<iostream>
#define Max 6
#define inf 0x3f3f3f3f
using namespace std; /*
VM[][]->邻接矩阵
v0->起始顶点,即计算顶点v0到其他顶点的距离
prepoint[i]-> 即起始顶点到第i个顶点最短路径所经历的全部顶点中,位于顶点i之前的那个顶点
dist[i]-> 起始顶点到顶点i的最短路径长度
*/ void dijkstra(unsigned int VM[Max][Max],int v0,unsigned int prepoint[],unsigned int dist[])
{
int k;
unsigned int temp,min;
int flag[Max]={};//flag[i]表示起始顶点到顶点i的最短距离已获取
for(int i=;i<Max;i++)
{
flag[i]=; //顶点i的最短路径还没获取
prepoint[i]=; //顶点i的前驱顶点是0
dist[i]=VM[v0][i]; //顶点i的最短路径为起始顶点到顶点i的权
}
flag[v0]=;
prepoint[]=;
for(int i=;i<Max;i++)
{
min=inf;
for(int j=;j<Max;j++)
{
if(flag[j]==&&min>dist[j])//寻找当前的最小路径,即数组dist中最小的权的顶点
{
min=dist[j];
k=j;
}
}
flag[k]=; //标记顶点k已经获得最短路径
for(int j=;j<Max;j++) //当前已知顶点k的最短路径,更新为获取最短路径的顶点的最短路径和前驱顶点
{
temp=(VM[k][j]==inf?inf:(min+VM[k][j]));
if(dist[j]>temp&&flag[j]==)
{
dist[j]=temp;
prepoint[j]=k;
}
}
}
for(int i=;i<Max;i++)
{
cout<<"shortest(1,"<<i+<<")="<<dist[i]<<endl;
}
}
int main()
{
unsigned int VM[Max][Max]={{, , , inf, inf, inf},
{inf, , , , inf, inf},
{inf, inf, , inf, , inf},
{inf, inf, , , , },
{inf, inf, inf, inf, , },
{inf, inf, inf, inf, inf, }};
unsigned int prepoint[Max];
unsigned int dist[Max];
memset(prepoint,,sizeof(prepoint));
memset(dist,,sizeof(dist));
dijkstra(VM,,prepoint,dist);
return ;
}
Dijstra算法求最短路径的更多相关文章
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- Dijkstra算法求最短路径(java)(转)
原文链接:Dijkstra算法求最短路径(java) 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到 ...
- js迪杰斯特拉算法求最短路径
1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...
- 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...
- _DataStructure_C_Impl:Dijkstra算法求最短路径
// _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...
- 通俗易懂理解——dijkstra算法求最短路径
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径.它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 ###基本思想 通过Dij ...
- Dijkstra算法求最短路径 Java实现
基本原理: 迪杰斯特拉算法是一种贪心算法. 首先建立一个集合,初始化只有一个顶点.每次将当前集合的所有顶点(初始只有一个顶点)看成一个整体,找到集合外与集合距离最近的顶点,将其加入集合并检查是否修改路 ...
- Java实现Dijkstra算法求最短路径
任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层 ...
- Dijkstra算法求最短路径
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...
随机推荐
- 【php增删改查实例】第十一节 - 部门管理模块(编辑功能)
9. 编辑部门功能的实现 思路:只允许用户勾选一条数据,点击编辑按钮,会跳出一个和新增数据类似的对话框.然后,用户可以修改部门名称和部门编码.点击保存按钮,提示修改成功. 9.1 前台代码编写 < ...
- 学习ML.NET(1): 构建流水线
ML.NET使用LearningPipeline类定义执行期望的机器学习任务所需的步骤,让机器学习的流程变得直观. 下面用鸢尾花瓣预测快速入门的示例代码讲解流水线是如何工作的. using Micro ...
- SqlBulkCopy简单封装,让批量插入更方便
关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...
- 免费的 Vue.js 入门与进阶视频教程
这是我免费发布的高质量超清「Vue.js 入门与进阶视频教程」. 全网最好的.免费的 Vue.js 视频教程,课程基于 Vue.js 2.0,由浅入深,最后结合实际的项目进行了最棒的技术点讲解,此课程 ...
- CAD2020下载安装AutoCAD2020中文版下载地址+安装教程
AutoCAD2020中文版为目前最新软件版本,我第一时间拿到软件进行安装测试,确保软件正常安装且各项功能正常可以使用,立刻拿出来分享,想用最新版本的话,抓紧下载使用吧: 我把我用的安装包贡献给你下载 ...
- xmlSpy套件(Altova MissionKit 2016)的Ollydbg调试过程及破解
最近工作需要用到XML处理软件,网上找到Altova MissionKit 2016( 包含了XmlSpy.MapForce.StyleVision.UModel.DatabaseSpy等工具),用了 ...
- MariaDB 安装与启动 过程记录
1. 安装之前的准备工作 rpm -qa |grep mysql rpm -qa |grep mariadb 按照查出来的软件包使用 yum remove 全部卸载,当然也可以 yum remov ...
- bootstrap是什么
Bootstrap,来自 Twitter,是目前最受欢迎的前端框架. Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,它简洁灵活,使得 Web 开发更加快捷. 本教程将向您讲解 ...
- Linux内核及分析 第七周 可执行程序的装载
实验步骤 1. 更新menu,用test.c覆盖test_exec.c 2. 把init 和 hello 放到了rootfs.img目录下,执行exec命令的时候自动加载了hello程序 3. 执行e ...
- 猜字游戏java
一.实践目的 1.掌握基本输入输出. 2.掌握方法定义与调用,理解参数传递方式. 3.掌握数组的声明.定义与初始化,数组的处理. 4.掌握数组作为方法参数和返回值. 二.实践要求 利用方法.数组.基本 ...