题目大意:

花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

要对10000007(非质数)取模

n<=10^15

分析:

O(nlogn)暴力显然可以想出来。显然会tle

这是从1~n一个一个枚举并变成二进制算的,但是我们是否可以向普通的数位dp,一次性枚举许多个数呢?

二进制的n,大概最多50位。例如21=10101.它显然可以拆成二进制下的10000+100+1

那么,我们是否可以尝试着去先算出来1~10..0的sum乘积?

假设这是一个n位数,也就是有n-1个零

考虑只有一个1的数字个数,C(n,1),即,在n个位置上,取1个位置变成1的方案数。那么,sum[i]=1的数的贡献就是1^c(n,1)

只有二个1,C(n-1,2),注意,是n-1位,因为除了特殊的10..000之外,其他的数都只有n-1个位置可放1。同理,sum[i]=2的数的贡献就是2^c(n-1,2),因为本身就是连乘嘛,交换律结合律就先把不同个数的数所做的贡献乘起来。

三个1同理。

……

以21=10101为例,这样我们可以切掉n的第一个10000以下的方案。

现在我们要处理10001~10100的方案数,我们仍然可以利用刚才处理100的思路,

只是,放一个1在最后的三位,必然每次都要加上之前已经有过的那一个1(10000),所以,是2^c(3,1)

2个1同理,是3^c(2,2)

这样,就解决问题了。

代码:

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. typedef long long ll;
  4. const int mod=;
  5. ll ans=;
  6. ll sum;
  7. ll wei;
  8. ll c[][];
  9. ll n;
  10. ll qm(ll x,ll y)
  11. {
  12. ll ret=,base=x;
  13. while(y)
  14. {
  15. if(y&) ret=(ret*base)%mod;
  16. base=(base*base)%mod;
  17. y>>=;
  18. }
  19. return ret;
  20. }
  21. int main()
  22. {
  23. c[][]=;
  24. for(int i=;i<=;i++)
  25. {
  26. c[i][]=;
  27. for(int j=;j<=;j++)
  28. c[i][j]=c[i-][j-]+c[i-][j];
  29. }//直接打表就好,
  30. //注意,组合数将作为指数部分,不能取模 C(50,25)long long也开的下,
  31. scanf("%lld",&n);
  32. wei=;sum=;//sum,已经处理出来的之前的1的个数
  33. for(wei=;wei>=;wei--)//按位枚举
  34. {
  35. if(n&((ll)<<wei-))
  36. {
  37. ans=(ans*qm(sum+,wei))%mod;//处理1个的特殊情况
  38. for(int k=sum+,s=;k<=sum+wei-;k++,s++)
  39. {
  40. ans=(ans*qm(k,c[wei-][s]))%mod;
  41. }
  42. sum++;
  43. }
  44. }
  45. printf("%lld",ans);
  46. return ;
  47. }

总结:

数位dp的最初思想的来源,就是利用整千,整万,整十万的整齐特殊性质,可以利用可以想到的数学方法,对枚举进行大幅的简化,直接减少到O(logn)

这个题其实算是数位dp的裸题,还是比较常规的。

对于其他的符合规定的第k小的数(启示录),是先预处理整位的情况,再按位枚举,考虑每个数能填几,从而类似康拓展开,找到第k小的数。

或者[l,r]区间内多少个满足限制的数,前缀和思想,求l-1以内,再求r以内做差就好。

bzoj3209 花神的数论题——数位dp的更多相关文章

  1. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  2. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  3. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  4. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  5. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  6. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  7. 洛谷$ P$4317 花神的数论题 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...

  8. 花神的数论题(数位dp)

    规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...

  9. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

随机推荐

  1. C#编程:从控制台读取数字的两种方式

    有时需要从控制台输入数字,就用到前面介绍的内容,数据转换,如:int num=int.Pares(Console.ReadLine()); int num=Convert.ToInt32(Consol ...

  2. Linux下防御DDOS攻击的操作梳理

    DDOS的全称是Distributed Denial of Service,即"分布式拒绝服务攻击",是指击者利用大量“肉鸡”对攻击目标发动大量的正常或非正常请求.耗尽目标主机资源 ...

  3. Docker容器学习梳理 - 基础知识(2)

    之前已经总结了Docker容器学习梳理--基础知识(1),但是不够详细,下面再完整补充下Docker学习的一些基础. Docker是个什么东西 Docker是一个程序运行.测试.交付的开放平台,Doc ...

  4. windows如何查看电脑开关机记录

    如何查看电脑开关机记录 (一)如果你只是想查看一下,从昨天关机到今天开机之间有没有人使用我的计算机,在“开始”菜单的运行”中输入“eventvwr.msc”,或者是按下"开始菜单" ...

  5. ubuntu——caffe配置deeplab

    1. 下载deeplab 2. 安装matio sudo apt-get install libmatio-dev 3. 修改Makefile文件 LIBRARIES += glog gflags p ...

  6. 开始第一段SPRINT

    四则运算Sprint计划 1.小组成员: 李豌湄:master 江丹仪:产品负责人 2.现状: 初步有一个四则运算的程序代码, 我们这个团队的编程基础比较薄弱,还不知道怎么将程序与数据库连接,也是在边 ...

  7. Doors Breaking and Repairing CodeForces - 1102C (思维)

    You are policeman and you are playing a game with Slavik. The game is turn-based and each turn consi ...

  8. WIN10基于Hyper-V下运行kubernetes入门问题

    http://www.cnblogs.com/shanyou/p/8503839.html 安装配置好之后启动,查看ip的方法: minikube status minikube ip 查看仪表盘da ...

  9. mybatis集成redis

    系统原生集成的Ehcache, 但是监控需要(version 2.7),Ehcache Monitor http://www.ehcache.org/documentation/2.7/operati ...

  10. 转载 loadrunner的一些问题解决

    sckOutOfMemory 7 内存不足  sckInvalidPropertyValue 380 属性值不效  sckGetNotSupported 394 属性不可读  sckGetNotSup ...