Codeforces 600E - Lomsat gelral(树上启发式合并)
600E - Lomsat gelral
题意
给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对每颗子树分别求有支配地位的颜色的和(把颜色这个权值相加)。
分析
树上启发式合并模板题。
如果暴力去搜索,显然是 \(O(n^2)\) 的算法,可以考虑优化,当我们搜索到节点 u 时,最后去搜索 u 的子节点中子树节点数量最大的子节点(树链剖分求出重儿子),并保留这个子节点所在子树的状态(颜色数量信息),这样在更新贡献的时候可以直接跳过它了。复杂度 \(O(nlogn)\)。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 2e5 + 10;
int n;
int fa[MAXN], son[MAXN], dep[MAXN], siz[MAXN];
int col[MAXN];
int cnt, head[MAXN];
struct Edge {
int to, next;
}e[MAXN];
void addedge(int u, int v) {
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt++;
}
void dfs(int u) {
siz[u] = 1; son[u] = 0;
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u]) {
fa[e[i].to] = u;
dep[e[i].to] = dep[u] + 1;
dfs(e[i].to);
if(siz[e[i].to] > siz[son[u]]) son[u] = e[i].to;
siz[u] += siz[e[i].to];
}
}
}
int vis[MAXN];
ll sum, mx, C[MAXN];
ll ans[MAXN];
void update(int u, int c) {
C[col[u]] += c;
if(c > 0 && C[col[u]] >= mx) {
if(C[col[u]] > mx) { sum = 0; mx = C[col[u]]; }
sum += col[u];
}
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && !vis[e[i].to]) update(e[i].to, c);
}
}
void dfs1(int u, int flg) {
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && e[i].to != son[u]) dfs1(e[i].to, 1);
}
if(son[u]) {
dfs1(son[u], 0);
vis[son[u]] = 1;
}
update(u, 1); ans[u] = sum;
if(son[u]) vis[son[u]] = 0;
if(flg) {
update(u, -1);
sum = 0; mx = 0;
}
}
int main() {
memset(head, -1, sizeof head);
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &col[i]);
}
for(int i = 1; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
addedge(x, y);
addedge(y, x);
}
dfs(1);
dfs1(1, -1);
for(int i = 1; i <= n; i++) {
printf("%I64d%c", ans[i], i == n ? '\n' : ' ');
}
return 0;
}
Codeforces 600E - Lomsat gelral(树上启发式合并)的更多相关文章
- CF EDU - E. Lomsat gelral 树上启发式合并
学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...
- codeforces 600E . Lomsat gelral (线段树合并)
You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...
- CF 600 E Lomsat gelral —— 树上启发式合并
题目:http://codeforces.com/contest/600/problem/E 看博客:https://blog.csdn.net/blue_kid/article/details/82 ...
- CF600E Lomsat gelral 树上启发式合并
题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\). 如果一种颜色在以 \(x\) ...
- 【CF600E】Lomsat gelral——树上启发式合并
(题面来自luogu) 题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. ci <= n <= 1e5 裸题.统计时先扫一遍得到出 ...
- Codeforces 600E Lomsat gelral (树上启发式合并)
题目链接 Lomsat gelral 占坑……等深入理解了再来补题解…… #include <bits/stdc++.h> using namespace std; #define rep ...
- Codeforces 600E. Lomsat gelral(Dsu on tree学习)
题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...
- codeforces 600E. Lomsat gelral 启发式合并
题目链接 给一颗树, 每个节点有初始的颜色值. 1为根节点.定义一个节点的值为, 它的子树中出现最多的颜色的值, 如果有多种颜色出现的次数相同, 那么值为所有颜色的值的和. 每一个叶子节点是一个map ...
- Codeforces 600 E. Lomsat gelral (dfs启发式合并map)
题目链接:http://codeforces.com/contest/600/problem/E 给你一棵树,告诉你每个节点的颜色,问你以每个节点为根的子树中出现颜色次数最多的颜色编号和是多少. 最容 ...
随机推荐
- python 学习分享-线程
多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进 ...
- Codeforces Round #329(Div2)
CodeForces 593A 题意:n个字符串,选一些字符串,在这些字符串中使得不同字母最多有两个,求满足这个条件可选得的最多字母个数. 思路:用c[i][j]统计文章中只有i,j对应两个字母出现的 ...
- form表单文件上传 servlet文件接收
需要导入jar包 commons-fileupload-1.3.2.jar commons-io-2.5.jar Upload.Jsp代码 <%@ page language="jav ...
- ASP.NET——真假分页
所谓分页,就是把所有要显示的内容分成n多页来显示.那为什么要用分页而不直接全部显示呢?这就好比一本书,我们可以用一张纸写完全部书的内容,但实际上并不是这么做的.我们把网页分成一页一页的,其实很大程度上 ...
- nginx禁止访问目录中可执行文件
某些网站系统需要用户上传图片等文件到某些目录下,难免程序有些漏洞,导致用户上传了php.cgi等等可执行的文件,导致网站陷入非常为难的境地. 此时我们可以通过nginx来禁止用户访问这些目录下的可执行 ...
- Ubuntu安装完之后需要做的事情
字体推荐思源 lantern可以设置全局代理 安装好了ubuntu之后,安装gnome主题 安装Gnome之前,升级系统: $ sudo apt update $ sudo apt upgrade 1 ...
- 【BZOJ 2809 dispatching】
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4393 Solved: 2246[Submit][Status][Discuss] Descript ...
- java设计模式--解决单例设计模式中懒汉式线程安全问题
首先写个单例,懒汉模式: public class SingleDemo { private static SingleDemo s = null; private SingleDemo(){} pu ...
- js函数形参和实参的区别
在<Javascript权威指南>中这样定义: 参数有形参(parameter)和实参(argument)的区别,形参相当于函数中定义的变量,实参是在运行时的函数调用时传入的参数. 说明白 ...
- 【Git】Git SSH Key 生成步骤
Git是分布式的代码管理工具,远程的代码管理是基于SSH的,所以要使用远程的Git则需要SSH的配置. github的SSH配置如下: 一 . 设置Git的user name和email: $ git ...