2.1  模型表示

  之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:

  

    

    我们将要用来描述这个回归问题的标记如下:

     m                代表训练集中实例的数量

      x                 代表特征/输入变量

     y                 代表目标变量/输出变量

     (x,y)            代表训练集中的实例

    (x(i),y(i)  )    代表第 i 个观察实例

    h                代表学习算法的解决方案或函数也称为假设(hypothesis)

    

  

    因而,要解决房价预测问题,我们实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设 h,然后将我们要预测的房屋的尺寸作为输入变量输入给 h,预测出该房屋的交易价格作为输出变量输出为结果。

  那么,对于我们的房价预测问题,我们该如何表达 h?

  一种可能的表达方式为:

  2.2  代价函数

  如图:

  

  

    我们现在要做的便是为我们的模型选择合适的参数(parameters)θ0 和 θ1,在房价问题 这个例子中便是直线的斜率和在 y 轴上的截距。

   我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差(modeling error)。

  

  

    我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数  

    我们绘制一个等高线图,三个坐标分别为 θ0 和 θ1 和 J(θ0,θ1):

  

    则可以看出在三维空间中存在一个使得 J(θ0,θ1)最小的点

  

  2.3  代价函数的直观理解 I

  

  

  2.4  代价函数的直观理解 II

  

  代价函数的样子

  

  

  2.5  梯度下降

    梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数J(θ0,θ1) 的最小值。 梯度下降背后的思想是:开始时我们随机选择一个参数的组合(θ0,θ1,...,θn),计算代价函数,

  然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到到到一个局部最小值(local minimum),因为我们并没有尝试完所有的参数组合,所以不能确定 我们得到的局部最小值是否便是

  全局最小值(global  minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。

  

  批量梯度下降(batch gradient descent)算法的公式为:

  

  其中 α 是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。

  

  

  注意:要同时更新θ0,θ1才可以,千万不要忘记

  2.6  梯度下降的直观理解

    梯度下降算法如下图:

  

  

    描述:对θ赋值,使得 J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。

    其中 α 是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大。

    

  

  

  2.7  梯度下降的线性回归

    梯度下降算法和线性回归算法比较如图:

  

    对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即:

  

    j=0  时:

  

    j=1 时:

   

    则算法改写成:

  

  

  2.8  接下来的内容

    在接下来的一组视频中,我会对线性代数进行一个快速的复习回顾。如果你从来没有接 触过向量和矩阵,那么这课件上所有的一切对你来说都是新知识,或者你之前对线性代数有所了解,但由于隔得久了,

  对其有所遗忘,那就请学习接下来的一组视频,我会快速地回顾 你将用到的线性代数知识。

    通过它们,你可以实现和使用更强大的线性回归模型。事实上,线性代数不仅仅在线性 回归中应用广泛,它其中的矩阵和向量将有助于帮助我们实现之后更多的机器学习模型,并在计算上更有效率。

  正是因为这些矩阵和向量提供了一种有效的方式来组织大量的数据,特别是当我们处理巨大的训练集时,如果你不熟悉线性代数,如果你觉得线性代数看上去是一 个复杂、可怕的概念,特别是对于之前从未接触过它的人,

    不必担心,事实上,为了实现机 器学习算法,我们只需要一些非常非常基础的线性代数知识。通过接下来几个视频,你可以 很快地学会所有你需要了解的线性代数知识。具体来说,为了帮助你判断是否有需要学习接

   下来的一组视频,我会讨论什么是矩阵和向量,谈谈如何加 、减 、乘矩阵和向量,讨论逆 矩阵和转置矩阵的概念

    如果你十分熟悉这些概念,那么你完全可以跳过这组关于线性代数的选修视频,但是如果你对这些概念仍有些许的不确定,不确定这些数字或这些矩阵的意思,那么请看一看下一组的视频,

  它会很快地教你一些你需要知道的线性代数的知识,便于之后编写机器学习算法 和处理大量数据。

机器学习第2课:单变量线性回归(Linear Regression with One Variable)的更多相关文章

  1. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

  2. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  3. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  4. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  5. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  6. 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)

    一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...

  7. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  8. 单变量线性回归(Linear Regression with One Variable)与代价函数

    所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿 ...

  9. 机器学习-线性回归算法(单变量)Linear Regression with One Variable

    1 线性回归算法 http://www.cnblogs.com/wangxin37/p/8297988.html 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,回归= ...

随机推荐

  1. HDU 6034 Balala Power!(贪心+排序)

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  2. Lights inside 3D Grid LightOJ - 1284 (概率dp + 推导)

    Lights inside 3D Grid LightOJ - 1284 题意: 在一个三维的空间,每个点都有一盏灯,开始全是关的, 现在每次随机选两个点,把两个点之间的全部点,开关都按一遍:问k次过 ...

  3. JAVA学习资料大全

    最高端的JAVA架构师资源(来自龙果学院 价值¥1399元).JAVA互联网分布式架构(龙果学院 价值¥899元).Spring Boot(2017年最新 包括源码原理分析) + Spring Clo ...

  4. javascript jquery document.ready window.onload

    网易 博客 下载LOFTER客户端 注册登录  加关注 凡图的编程之路 2012年7月从一个编程新手的点点滴滴 首页 日志 LOFTER 相册 博友 关于我     日志       关于我 Holy ...

  5. android hook 框架 ADBI 如何实现so注入

    Android so注入-libinject2 简介.编译.运行 Android so注入-libinject2  如何实现so注入 Android so注入-Libinject 如何实现so注入 A ...

  6. poj2181 jumping cow

    umping Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7579   Accepted: 4559 Descr ...

  7. 远程服务器的SqlServer允许本地连接

    最近做项目都是直接在阿里云买的服务器,并且SqlServer也是安装好的.但是默认的时候,这个服务器上的SqlServer并不允许直接在本地的SqlServer客户端访问,尽管服务器有公网IP. 想要 ...

  8. Cannot read property 'field' of undefined (at _8 (jquery.numberbox.js:33))

    问题描述: 页面端用了easyui的numberbox属性,然后在用js的方法修改值的时候,明明看到页面中的值是数字型(数量字段), 但是就是会报错 这种错误真的是很难理解,不过经过我的debug跟了 ...

  9. 状压DP【p1879】[USACO06NOV]玉米田Corn Fields

    Description 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上 ...

  10. 洛谷——1164 小A点菜(背包方案数)

    大水题!! 题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:“随便点”. 题目描述 不过uim由于买 ...