UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度
由于每一个长方体都有3种放法 比較不好控制 能够把一个长宽高分成三个长方体 高度是固定的 这样就比較好控制了
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 105
int x[maxn], y[maxn], z[maxn], d[maxn], n;
int dp(int i)
{
if(d[i] > 0) return d[i];
d[i] = z[i];
for(int j = 1; j <= n; ++j)
{
if((x[i] > x[j] && y[i] > y[j]) || (x[i] > y[j] && y[i] > x[j]))
d[i] = max(d[i], dp(j) + z[i]);
}
return d[i];
} int main()
{
int a, b, c, cas = 1;
while (scanf("%d", &n), n)
{
n *= 3;
for(int i = 1; i <= n;)
{
scanf("%d%d%d", &a, &b, &c);
x[i] = a; y[i] = b; z[i++] = c;
x[i] = a; y[i] = c; z[i++] = b;
x[i] = b; y[i] = c; z[i++] = a;
} int ans = 0;
memset(d, 0, sizeof(d));
for(int i = 1; i <= n; ++i)
ans = max(dp(i), ans);
printf("Case %d: maximum height = %d\n", cas, ans); cas++;
}
return 0;
}
The Tower of Babylon |
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell
you the whole story:
The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions .
A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower,
one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
and Output
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The
maximum value for n is 30. Each of the next n lines contains three integers representing the values , and .
Input is terminated by a value of zero (0) for n.
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case:
maximum height = height"
Sample
Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample
Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
UVa 437 The Tower of Babylon(DP 最长条件子序列)的更多相关文章
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)
题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...
- UVA 10131 Is Bigger Smarter?(DP最长上升子序列)
Description Question 1: Is Bigger Smarter? The Problem Some people think that the bigger an elepha ...
随机推荐
- 关于yii2 的db log 日志 错误处理errorHandler
log 通过配置Web.config来完成 1 数据库增加 ‘前缀_log’表 2 配置Web.config 'bootstrap' => ['log'], 'components' => ...
- UOJ 180【UR #12】实验室外的攻防战
http://uoj.ac/contest/25/problem/180 从前往后对比串A,B 当$A_i,B_i$不相同时找到$B_i$在A中的位置j 若$min{A_1,A_2,A_3...... ...
- HNOI2016 游记
题外 忽然想起去年的HNOI2015总结里好像引了一句诗: 此情可待成追忆,只是当时已惘然. Day0 唔,感觉不知道想些什么,只是觉得其实还没有做好准备,想学的东西学的仓促,想复习的东西,也只能看一 ...
- 【NOIP模拟赛】【数学真奇妙系列】纸盒子
Task 1.纸盒子(box.pas/box.c/box.cpp) [题目描述] Mcx是一个有轻度洁癖的小朋友.有一天,当他沉溺于数学卷子难以自拔的时候,恍惚间想起在自己当初学习概率的时候准备的一堆 ...
- Linux文本过滤常用命令(转)
01 cat命令 通常用来显示文本文件的内容 一般用来查看比较短的文本文件,因为其缓冲区有限 -s选项可以用来合并文件中多余的空行,多个空行将被压缩为一个空行; -n选项可以显示行号 -b选项可以跳过 ...
- 细说JavaScript对象(3):hasOwnProperty
判断一个属性是定义在对象本身而不是继承自原型链,我们需要使用从 Object.prototype 继承而来的 hasOwnProperty 方法. hasOwnProperty 方法是 JavaScr ...
- RTM CU CTP
.RTM: Released To Manufacturing,也就是新产品的正式发布版本,比如SQL 2008 RTM.其后的补丁都是基于这个之上的. .CU: Cumulative Update, ...
- 使用React开发
阅读目录 React的组件生命周期 JSX 语法 父组件传向子组件 子组件传向父(爷)组件 getDefaultProps && getInitialState 获取真实的DOM节点 ...
- [置顶]
docker--基础镜像和dockerfile
制作基础镜像 注意:需要在CentOS6下操作 准备工作 yum -y install febootstrap 下载ISO镜像文件到服务器 mkdir /mnt/centos6/ mount -o l ...
- 设计模式之组合模式(PHP实现)
github地址:https://github.com/ZQCard/design_pattern /** 组合模式(Composite Pattern),又叫部分整体模式,是用于把一组相似的对象当作 ...