POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2 题目大意:给你K个挤奶点,C头牛,每个挤奶点能最多挤K头牛。下面是矩阵,行和列都表示K个挤奶点,C头牛。矩阵A(i,j)表示i到j的距离。距离都为正值,如果出现0,则表示不直接连通。数据保证有解。问你让这m头牛都能挤奶的条件下,最远的牛最少要走多远。 解题思路:二分枚举距离,每次根据枚举的距离,重新构图。每个挤奶点的匹配次数已知。但是这个题目有一点比较坑,就是二分枚举的时候,r应该从最大值INF开始,因为200只是两点之间的直接距离,floyd之后,可能会出现大于200的距离,应该注意。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<iostream>
using namespace std;
const int INF = 9999999;
const int maxn = 1010;
int Map[maxn][maxn];
int linker[maxn][maxn], used[maxn];
int M;
bool dfs(int u,int rn){
for(int v = 1; v <= rn; v++){
if(used[v] || !Map[u][v]){
continue;
}
used[v] = 1;
if(linker[v][0] < M){
linker[v][++linker[v][0]] = u;
return true;
}else{
for(int j = 1; j <= linker[v][0]; j++){
if(dfs(linker[v][j],rn)){
linker[v][j] = u;
return true;
}
}
}
}
return false;
}
bool Hungary(int ln,int rn){
int ret = 0;
for(int i = 0; i <= rn; i++){
linker[i][0] = 0;
}
for(int i = 1; i <= ln; i++){
memset(used,0,sizeof(used));
if(dfs(i,rn)){
ret++;
}
}
if(ln == ret){
return true;
}
return false;
}
int main(){
int K, C;
int matrix[500][500];
while(scanf("%d%d%d",&K,&C,&M)!=EOF){
int nn = K + C;
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
scanf("%d",&matrix[i][j]);
if(matrix[i][j] == 0){
matrix[i][j] = INF;
}
}
}
for(int k = 1; k <= nn; k++){
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
if(matrix[i][j] > matrix[i][k] + matrix[k][j]){
matrix[i][j] = matrix[i][k] + matrix[k][j];
}
}
}
}
int l = 1, r = INF, ans;
while(l <= r){ //不会写二分,错了n多次 ORZ
int mid = (l+r)/2;
memset(Map,0,sizeof(Map));
for(int i = K + 1; i <= nn; i++){
for(int j = 1; j <= K; j++){
if(matrix[i][j] <= mid){
Map[i-K][j] = 1;
}
}
}
if(Hungary(C,K)){
r = mid - 1;
ans = mid;
}else{
l = mid + 1;
}
}
printf("%d\n",l);
}
return 0;
}
POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】的更多相关文章
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112 Optimal Milking 最短路 二分构图 网络流
题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)
题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远 输入数据: 第一行三个数 K, C, M 接下来是 ...
- poj 2112 Optimal Milking (二分图匹配的多重匹配)
Description FJ has moved his K ( <= K <= ) milking machines <= C <= ) cows. A ..K; the c ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
随机推荐
- day01.3-常用Dos命令
一. 常用Dos命令 Windons系统下:开始 —> 运行—> cmd —> 进入命令运行界面 1. ipconfig /? |—> 查看ip帮助: 2. ping / ...
- 【机器学习】李宏毅机器学习-Keras-Demo-神经网络手写数字识别与调参
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统: ...
- java基础之变量和常量、类型转换
一. 变量 变量是可改变的量,每赋个值便会开辟一个新内存地址. 1.首先,变量需要一个声明,例如:int a,这个a也可以当作是一个标签,它指向了一个内存地址,这个地址是属于int类型的套餐, ...
- Go语言技术教程:Redis介绍安装和使用
Redis介绍 我们日常的开发,数据都需要进行持久化存储,常见的持久化存储有很多种,比如数据库,文件,计算机内存,甚至云服务器等都是持久化存储数据的方式.而就数据库而言,经常又会被人们分为关系型数据库 ...
- jQuery回车触发事件
举例: 需求:要求回车触发下一步 Html部分 <div style="margin-top: 25px;"> <a href="#" cla ...
- DP【洛谷P2363】马农
[洛谷P2363]马农 题目描述 在观看完战马检阅之后,来自大草原的两兄弟决心成为超级"马农",专门饲养战马. 兄弟两回到草原,将可以养马的区域,分为N*N的单位面积的正方形,并实 ...
- ubuntu中出现:程序 'java' 已包含在下列软件包中的解决方法
已经安装sun java 在终端中输入java,出现以下提示: 程序 'java' 已包含在下列软件包中: * default-jre * gcj-4.8-jre-headless * gcj-4.9 ...
- Redis学习笔记(5)—— Redis的持久化方案&Redis的集群搭建
一.Redis的持久化方案 Redis的高性能是由于其将所有数据都存储在了内存中,为了使Redis在重启之后仍能保证数据不丢失,需要将数据从内存中同步到硬盘中,这一过程就是持久化. Redis支持两种 ...
- Go语言基础之21--反射
一.变量介绍 1.1 变量的内在机制 A. 类型信息,这部分是元信息,是预先定义好的:比如:string.int等 B. 值类型,这部分是程序运行过程中,动态改变的:比如:是变量实例所存储的真是的值. ...
- 一般小的maven pom
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...