POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2 题目大意:给你K个挤奶点,C头牛,每个挤奶点能最多挤K头牛。下面是矩阵,行和列都表示K个挤奶点,C头牛。矩阵A(i,j)表示i到j的距离。距离都为正值,如果出现0,则表示不直接连通。数据保证有解。问你让这m头牛都能挤奶的条件下,最远的牛最少要走多远。 解题思路:二分枚举距离,每次根据枚举的距离,重新构图。每个挤奶点的匹配次数已知。但是这个题目有一点比较坑,就是二分枚举的时候,r应该从最大值INF开始,因为200只是两点之间的直接距离,floyd之后,可能会出现大于200的距离,应该注意。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<iostream>
using namespace std;
const int INF = 9999999;
const int maxn = 1010;
int Map[maxn][maxn];
int linker[maxn][maxn], used[maxn];
int M;
bool dfs(int u,int rn){
for(int v = 1; v <= rn; v++){
if(used[v] || !Map[u][v]){
continue;
}
used[v] = 1;
if(linker[v][0] < M){
linker[v][++linker[v][0]] = u;
return true;
}else{
for(int j = 1; j <= linker[v][0]; j++){
if(dfs(linker[v][j],rn)){
linker[v][j] = u;
return true;
}
}
}
}
return false;
}
bool Hungary(int ln,int rn){
int ret = 0;
for(int i = 0; i <= rn; i++){
linker[i][0] = 0;
}
for(int i = 1; i <= ln; i++){
memset(used,0,sizeof(used));
if(dfs(i,rn)){
ret++;
}
}
if(ln == ret){
return true;
}
return false;
}
int main(){
int K, C;
int matrix[500][500];
while(scanf("%d%d%d",&K,&C,&M)!=EOF){
int nn = K + C;
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
scanf("%d",&matrix[i][j]);
if(matrix[i][j] == 0){
matrix[i][j] = INF;
}
}
}
for(int k = 1; k <= nn; k++){
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
if(matrix[i][j] > matrix[i][k] + matrix[k][j]){
matrix[i][j] = matrix[i][k] + matrix[k][j];
}
}
}
}
int l = 1, r = INF, ans;
while(l <= r){ //不会写二分,错了n多次 ORZ
int mid = (l+r)/2;
memset(Map,0,sizeof(Map));
for(int i = K + 1; i <= nn; i++){
for(int j = 1; j <= K; j++){
if(matrix[i][j] <= mid){
Map[i-K][j] = 1;
}
}
}
if(Hungary(C,K)){
r = mid - 1;
ans = mid;
}else{
l = mid + 1;
}
}
printf("%d\n",l);
}
return 0;
}
POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】的更多相关文章
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112 Optimal Milking 最短路 二分构图 网络流
题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)
题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远 输入数据: 第一行三个数 K, C, M 接下来是 ...
- poj 2112 Optimal Milking (二分图匹配的多重匹配)
Description FJ has moved his K ( <= K <= ) milking machines <= C <= ) cows. A ..K; the c ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
随机推荐
- 【C#】 WebApi 路由机制剖析
C#进阶系列——WebApi 路由机制剖析:你准备好了吗? 转自:https://blog.csdn.net/wulex/article/details/71601478 2017年05月11日 10 ...
- (转)Haar-like矩形遍历检测窗口演示Matlab源代码
from:http://blog.sina.com.cn/s/blog_736aa0540101kzqb.html clc; clear; close all; % Haar-like特征矩形计算 b ...
- Iterator 遍历器
1.遍历器(Iterator)是一种接口,为各种不同的数据结构提供统一的访问机制.任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据结构的所有成员). 2.Iterator ...
- 【转】asp使用母版页时内容页如何使用css和javascript
源地址:https://www.cnblogs.com/accumulater/p/6767138.html
- 配置IIS使用Python 与常见问题解决
打开IIS管理器 选择功能视图,然后选择ISAPI和CGI限制 打开后,在右侧操作,点击添加,会出现下图所示 按图中提示填写相应部分,在选择路径时,默认可能是dll文件,改成全部文件即可,然后再选择p ...
- Oracle使用PARTITION BY 实现数据稠化报表
所谓的数据稠化,就是补全缺失的数据.因为在数据库表中,存储的数据经常是稀疏的(sparse data),也就是不完整的.比如记录一个员工每个月的销售额,用这么一个销售表来记录:SalesRecord( ...
- CF581B Luxurious Houses 模拟
The capital of Berland has n multifloor buildings. The architect who built up the capital was very c ...
- HDU6315 Naive Operations(多校第二场1007)(线段树)
Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Other ...
- java.lang.Exception: No tests found matching(Junit测试异常)
java.lang.Exception: No tests found matching [{ExactMatcher:fDisplayName=save], {ExactMatcher:fDispl ...
- Number Sequence (KMP第一次出现位置)
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M ...