POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2 题目大意:给你K个挤奶点,C头牛,每个挤奶点能最多挤K头牛。下面是矩阵,行和列都表示K个挤奶点,C头牛。矩阵A(i,j)表示i到j的距离。距离都为正值,如果出现0,则表示不直接连通。数据保证有解。问你让这m头牛都能挤奶的条件下,最远的牛最少要走多远。 解题思路:二分枚举距离,每次根据枚举的距离,重新构图。每个挤奶点的匹配次数已知。但是这个题目有一点比较坑,就是二分枚举的时候,r应该从最大值INF开始,因为200只是两点之间的直接距离,floyd之后,可能会出现大于200的距离,应该注意。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<iostream>
using namespace std;
const int INF = 9999999;
const int maxn = 1010;
int Map[maxn][maxn];
int linker[maxn][maxn], used[maxn];
int M;
bool dfs(int u,int rn){
for(int v = 1; v <= rn; v++){
if(used[v] || !Map[u][v]){
continue;
}
used[v] = 1;
if(linker[v][0] < M){
linker[v][++linker[v][0]] = u;
return true;
}else{
for(int j = 1; j <= linker[v][0]; j++){
if(dfs(linker[v][j],rn)){
linker[v][j] = u;
return true;
}
}
}
}
return false;
}
bool Hungary(int ln,int rn){
int ret = 0;
for(int i = 0; i <= rn; i++){
linker[i][0] = 0;
}
for(int i = 1; i <= ln; i++){
memset(used,0,sizeof(used));
if(dfs(i,rn)){
ret++;
}
}
if(ln == ret){
return true;
}
return false;
}
int main(){
int K, C;
int matrix[500][500];
while(scanf("%d%d%d",&K,&C,&M)!=EOF){
int nn = K + C;
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
scanf("%d",&matrix[i][j]);
if(matrix[i][j] == 0){
matrix[i][j] = INF;
}
}
}
for(int k = 1; k <= nn; k++){
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= nn; j++){
if(matrix[i][j] > matrix[i][k] + matrix[k][j]){
matrix[i][j] = matrix[i][k] + matrix[k][j];
}
}
}
}
int l = 1, r = INF, ans;
while(l <= r){ //不会写二分,错了n多次 ORZ
int mid = (l+r)/2;
memset(Map,0,sizeof(Map));
for(int i = K + 1; i <= nn; i++){
for(int j = 1; j <= K; j++){
if(matrix[i][j] <= mid){
Map[i-K][j] = 1;
}
}
}
if(Hungary(C,K)){
r = mid - 1;
ans = mid;
}else{
l = mid + 1;
}
}
printf("%d\n",l);
}
return 0;
}
POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】的更多相关文章
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112 Optimal Milking 最短路 二分构图 网络流
题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)
题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远 输入数据: 第一行三个数 K, C, M 接下来是 ...
- poj 2112 Optimal Milking (二分图匹配的多重匹配)
Description FJ has moved his K ( <= K <= ) milking machines <= C <= ) cows. A ..K; the c ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
随机推荐
- linux 进程间通信机制(IPC机制)一消息队列
消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法.每个数据块都被认为含有一个类型,接收进程可以独立地接收含有不同类型的数据结构.我们可以通过发送消息来避免命名管道的同步和阻塞问题.但是消息 ...
- sqlserver小批量导数据
USE [KM_Voice] GO /****** Object: StoredProcedure [dbo].[proc_insert] Script Date: 01/09/2015 18: ...
- 对XML文档进行修改
怎样对XML文档时行修改.Insus.NET在此举个简单的例子.XML文档,就以这篇博文:http://www.cnblogs.com/insus/p/3274220.html 如果我们想对其中一个节 ...
- Harbor安装 -- 企业级Registry仓库
(一)Harbor安装 -- 企业级Registry仓库 以下文章转自http://www.jianshu.com/p/2ebadd9a323d 根据Harbor官方描述: Harbor是一个用于存储 ...
- B:魔兽世界之一:备战
描述 魔兽世界的西面是红魔军的司令部,东面是蓝魔军的司令部.两个司令部之间是依次排列的若干城市. 红司令部,City 1,City 2,……,City n,蓝司令部 两军的司令部都会制造武士.武士一共 ...
- Java性能优化之高性能JAVA代码的若干个习惯
创建对象: 1.避免在循环体中创建对象,循环前应该创建对象,避免浪费更多内存空间和增加GC负担 这种情况在我们的实际应用中经常遇到,而且我们很容易犯类似的错误,例如下面的代码: for (int i ...
- C++基础学习2:命名空间
C++语言引入命名空间(Namespace)这一概念主要是为了避免命名冲突,其关键字为 namespace. 科技发展到如今,一个系统通常都不会仅由一个人来开发完成,不同的人开发同一个系统,不可避免地 ...
- 小B的询问 莫队分块
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- Redis 工具类 java 实现的redis 工具类
最近了解了一下非关系型数据库 redis 会使用简单的命令 在自己本地电脑 使用时必须先启动服务器端 在启动客户端 redis 简介 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内 ...
- ueditor chrome bug
一.概述: 关于UEditor在谷歌浏览Chrome打开选择指上传图片,发现[点击选择图片]时无法立即弹出选择框,而是等4-7秒钟才显示出来的BUG,试了N多方法,改层级都用了,也无效.在网上找到了一 ...