5-9 Huffman Codes   (30分)

In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i]and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No

方法一:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<stack>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
struct node{
string dight;
int weight;
bool operator<(const node &a) const {//什么情况下优先输出后面那个,这个和sort的刚好相反
if(weight==a.weight){
/*if(dight.length()==a.dight.length()){
return dight.compare(a.dight)>0;
}*/
return dight.length()<a.dight.length();
}
return weight>a.weight;
}
};
node h[];
map<char,int> ha;
int main(){
//freopen("D:\\INPUT.txt","r",stdin);
int n;
scanf("%d",&n);
int i,num,sum;
char cha;
for(i=;i<n;i++){
cin>>cha;
scanf("%d",&ha[cha]);
}
scanf("%d",&num);
while(num--){
sum=;
priority_queue<node> q;
for(i=;i<n;i++){
cin>>cha>>h[i].dight;
//scanf("%s",h[i].dight);
sum+=ha[cha];
h[i].weight=ha[cha];
q.push(h[i]);
}
/*while(!q.empty()){
cout<<q.top().weight<<" "<<q.top().dight<<endl;
q.pop();
}*/
//cout<<num<<" "<<sum<<endl;
node cur,next;
queue<node> qq;
bool can;
while(!q.empty()){
cur=q.top();
q.pop();
can=false;
while(!q.empty()){
next=q.top();
q.pop();
if(cur.dight.length()==next.dight.length()){
if(cur.dight.substr(,cur.dight.length()-)==next.dight.substr(,next.dight.length()-)&&cur.dight[cur.dight.length()-]!=next.dight[next.dight.length()-]){
can=true;
while(!qq.empty()){//还原
q.push(qq.front());
qq.pop();
}
break;
}
else{
qq.push(next);
}
}
else{
break;
}
}
if(can){//找到了
cur.dight=cur.dight.substr(,cur.dight.length()-);
cur.weight+=next.weight;
if(q.empty()){
break;
}
q.push(cur);
}
else{
break;
}
}
if(can&&cur.weight==sum&&!cur.dight.length()){
printf("Yes\n");
}
else{
printf("No\n");
}
}
return ;
}

方法二:

学习网址:http://blog.csdn.net/u013167299/article/details/42244257

1.哈夫曼树法构造的wpl最小。

2.任何01字符串都不是其他字符串的前缀。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<stack>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
struct node{
string s;
int count;
};
node p[];
map<char,int> ha;
priority_queue<int,vector<int>,greater<int> > q;//从小到大排
bool check(node *p,int n){
int i,j;
for(i=;i<n;i++){
string temp=p[i].s.substr(,p[i].s.length());
for(j=;j<n;j++){
if(i==j){
continue;
}
if(temp==p[j].s.substr(,p[i].s.length())){//前缀检查
break;
}
}
if(j<n){//不满足要求
return false;
}
}
return true;
}
int main(){
//freopen("D:\\INPUT.txt","r",stdin);
int n,i;
scanf("%d",&n);
char c;
int wpl=;
for(i=;i<n;i++){
cin>>c;
scanf("%d",&ha[c]);
q.push(ha[c]);
}
int cur,next;
while(!q.empty()){
cur=q.top();
q.pop();
if(q.empty()){//最后一次不用做加法
break;
}
cur+=q.top();
q.pop();
wpl+=cur; //cout<<cur<<endl; q.push(cur);
}
//cout<<wpl<<endl;
int num;
scanf("%d",&num);
while(num--){
int sum=;
for(i=;i<n;i++){
cin>>c;
p[i].count=ha[c];
cin>>p[i].s;
sum+=p[i].count*p[i].s.length();
} // cout<<sum<<endl; if(sum==wpl&&check(p,n)){
printf("Yes\n");
}
else{
printf("No\n");
}
}
return ;
}

pta5-9 Huffman Codes (30分)的更多相关文章

  1. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  2. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  5. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  7. PAT 05-树8 Huffman Codes

    以现在的生产力,是做不到一天一篇博客了.这题给我难得不行了,花了两天时间在PAT上还有测试点1没过,先写上吧.记录几个做题中的难点:1.本来比较WPL那块我是想用一个函数实现的,无奈我对传字符串数组无 ...

  8. 05-树9 Huffman Codes

    哈夫曼树 Yes 需满足两个条件:1.HuffmanTree 结构不同,但WPL一定.子串WPL需一致 2.判断是否为前缀码 开始判断用的strstr函数,但其传值应为char *,不能用在strin ...

  9. PTA 07-图5 Saving James Bond - Hard Version (30分)

    07-图5 Saving James Bond - Hard Version   (30分) This time let us consider the situation in the movie ...

随机推荐

  1. c# 捕获非托管异常

    在.NET 4.0之后,CLR将会区别出一些异常(都是SEH异常),将这些异常标识为破坏性异常(Corrupted State Exception).针对这些异常,CLR的catch块不会捕捉这些异常 ...

  2. c++滚动数组

    说来惭愧,我老早以前就学习了dp,可直到最近才知道滚动数组. 所以说,滚动数组是什么呢? 它是一种优化dp空间复杂度的思想. 在dp转移时,我们往往不需要之前推的所有的,而是只需要前一两个转移的. 我 ...

  3. tomcat - 认识

    tomcat - web应用服务器 环境:ubuntu测试 @shell命令(cd到tomcat目录下) 启动: ./bin  startup.sh 关闭:./bin  shutdown.sh @部署 ...

  4. Notification通知代码简洁使用

    1.自定义发送 Notification 的使用 1.1 通知(消息)的创建 ---------------详细介绍篇 // 不带消息内容 NSNotification *notification1 ...

  5. Git解决pull无法操作成功

    https://blog.csdn.net/chenjunfengf/article/details/78301957 场景 在git pull的时候,如果本地代码有改动,而服务器上代码也已经被其他人 ...

  6. 开窗函数Over用法

    比如我们有这个表: 销售记录表 日期 姓名 产品 销售额 201601 A 电脑 12560 201601 A 手机 6501 201601 A 平板 8510 201602 A 手机 1560 20 ...

  7. Scene is unreachable due to lack of entry points and does not have an identifier for runtime access via -instantiateViewControllerWithIdentifier解决办法

    使用Storyboard时出现以下警告: warning: Unsupported Configuration: Scene is unreachable due to lack of entry p ...

  8. CF581B Luxurious Houses 模拟

    The capital of Berland has n multifloor buildings. The architect who built up the capital was very c ...

  9. springboot整合fastdfs

    首先pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...

  10. HTTP Status 415 – Unsupported Media Type(使用@RequestBody后postman调接口报错)

    1.问题描述:使用springMVC框架后,添加数据接口中,入参对象没使用@RequestBody注解,造成postman发起post请求, from-data可以调通接口,但是raw调不通接口,然后 ...